Magnetic Ternary Hybrid Composites as an Efficient Photocatalyst for Degradation of Acid Orange 7 Dye
"> Figure 1
<p>XRD patterns of samples synthesized with different molar ratios of Ce:Fe (1:1, 1:2, 1:5, 1:10, 1:15 and 1:20), and two reference samples synthesized without Fe and without Ce.</p> "> Figure 2
<p>SEM images of reference samples (<b>a</b>) CeO<sub>2</sub> and (<b>b</b>) Fe<sub>3</sub>O<sub>4</sub>; composites synthesized with Ce:Fe molar ratios of (<b>c</b>) 1:1, (<b>d</b>) 1:2, (<b>e</b>) 1:5, (<b>f</b>) 1:10, (<b>g</b>) 1:15 and (<b>h</b>) 1:20.</p> "> Figure 3
<p>(<b>a</b>) Selected area in the SEM micrograph and elemental mappings of (<b>b</b>) Fe (rad), (<b>c</b>) Ce (green) and (<b>d</b>) O (blue) for the Fe<sub>3</sub>O<sub>4</sub>/FeOOH/CeO<sub>2</sub> composite synthesized with Ce:Fe molar ratio of 1:15.</p> "> Figure 4
<p>Magnetic response behaviors of CeO<sub>2</sub>, Fe<sub>3</sub>O<sub>4</sub> and the composites synthesized with Ce:Fe molar ratios of 1:1, 1:2, 1:5, 1:10, 1:15 and 1:20. [samples] = 0.1 g; <span class="html-italic">V</span> = 30 mL. In each picture, the vial on the left, standing upright, shows the suspension after 30 min of ultrasonic dispersion followed by 24 h of settling. The vial on the right, with a magnet, shows the result of 2 min magnetic separation.</p> "> Figure 5
<p>Magnetic response behaviors of CeO<sub>2</sub>, Fe<sub>3</sub>O<sub>4</sub> and the composites synthesized with Ce:Fe molar ratios of 1:1, 1:2, 1:5, 1:10, 1:15 and 1:20. [samples] = 0.1 g; <span class="html-italic">V</span> = 30 mL. In each picture, the top vial shows the suspension after 30 min of ultrasonic dispersion, while the bottom vial with a magnet displays 2 min of magnetic separation.</p> "> Figure 6
<p>UV–VIS absorption spectra of samples synthesized with different molar ratios of Ce:Fe (1:1, 1:2, 1:5, 1:10, 1:15 and 1:20), and two reference samples synthesized without Fe and without Ce.</p> "> Figure 7
<p>Photo-degradation rates of AO7 in the presence of CeO<sub>2</sub>, Fe<sub>3</sub>O<sub>4</sub> and the Fe<sub>3</sub>O<sub>4</sub>/FeOOH/CeO<sub>2</sub> composites synthesized with Ce:Fe molar ratios of 1:1, 1:2, 1:5, 1:10, 1:15 and 1:20. [catalyst] = 0.1 g; [AO7] = 5 mg/L, <span class="html-italic">V</span> = 100 mL; ambient temperature = 25 °C; without pH preadjustment.</p> "> Figure 8
<p>Cycling runs in the photocatalytic degradation of AO7 under simulated UV illumination of the Fe<sub>3</sub>O<sub>4</sub>/FeOOH/CeO<sub>2</sub> composite synthesized with a Ce:Fe molar ratio of 1:15.</p> "> Scheme 1
<p>The synthesis of Fe<sub>3</sub>O<sub>4</sub>/FeOOH/CeO<sub>2</sub> magnetic complex catalysts, along with two reference samples: CeO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials
2.2. Synthesis of Magnetic Complex Catalysts
2.3. Characterization
2.4. Degradation of AO7 Dye
2.5. Reuse of Catalysts
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saratale, R.G.; Saratale, G.D.; Chang, J.S.; Govindwar, S.P. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 2011, 42, 138–157. [Google Scholar] [CrossRef]
- Thakur, S.; Chauhan, M.S. Treatment of Dye Wastewater from Textile Industry by Electrocoagulation and Fenton Oxidation: A Review. Water Qual. Manag. 2018, 79, 117–129. [Google Scholar] [CrossRef]
- Momeni, S.; Nematollahi, D. New insights into the electrochemical behavior of acid orange 7: Convergent paired electrochemical synthesis of new aminonaphthol derivatives. Sci. Rep. 2017, 7, 41963. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, E.; Kousha, M.; Koutahzadeh, N.; Sohrabi, M.S.; Bhatnagar, A. Biosorption and bioaccumulation studies of acid Orange 7 dye by Ceratophylum demersum. Environ. Prog. Sustain. 2012, 32, 285–293. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Sarker, T.; Tahmid, I.; Sarker, R.K.; Dey, S.C.; Islam, M.T.; Sarker, M. ZIF-67-based materials as adsorbent for liquid phase adsorption—A review. Polyhedron 2014, 260, 117069. [Google Scholar] [CrossRef]
- Kaczorowska, M.A.; Bożejewicz, D. The Application of Chitosan-Based Adsorbents for the Removal of Hazardous Pollutants from Aqueous Solutions-A Review. Sustainability 2024, 16, 2615. [Google Scholar] [CrossRef]
- Enol, Z.M.; Messaoudi, N.E.; Cieroglu, Z.; Miyah, Y.; Arslanolu, H.; Balam, N.; Kazan-Kaya, E.S.; Kaur, P.; Georgin, J. Removal of food dyes using biological materials via adsorption: A review. Food Chem. 2024, 450, 139398. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef]
- Imran, D.M.; Rida, K.; Hussain, Z.M.S.A. A critical review on application of organic, inorganic and hybrid nanophotocatalytic assemblies for photocatalysis of methyl orange dye in aqueous medium. Rev. Chem. Eng. 2024, 40, 67–91. [Google Scholar] [CrossRef]
- Sharma, A.; Sunny, S.; Arulraj, J.; Hegde, G. Exploring the efficiency of green synthesized silver nanoparticles as photocatalysts for organic dye degradation: Unveiling key insights. Nano Express 2024, 5, 022002. [Google Scholar] [CrossRef]
- Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S. A review on photocatalysis used for wastewater treatment: Dye degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cheng, H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023, 28, 3706. [Google Scholar] [CrossRef] [PubMed]
- Ngulube, K.F.; Abdelhaleem, A.; Fujii, M.; Nasr, M. Synergism of Artificial Intelligence and Techno-Economic for Sustainable Treatment of Methylene Blue Dye-Containing Wastewater by Photocatalysis. Sustainability 2024, 16, 529. [Google Scholar] [CrossRef]
- Eddy, D.R.; Rahmawati, D.; Permana, M.D.; Takei, T.; Solihudin; Suryana; Noviyanti, A.R.; Rahayu, I. A review of recent developments in green synthesis of TiO2 nanoparticles using plant extract: Synthesis, characterization and photocatalytic activity. Inorg. Chem. Commun. 2024, 165, 112531. [Google Scholar] [CrossRef]
- Jianxin, L.; Hengzhe, Y.; Xuedi, C.; Xiaolei, Z.; Junlin, F. Review of electrospinning technology of photocatalysis, electrocatalysis and magnetic response. J. Mater. Sci. 2024, 59, 10623–10649. [Google Scholar] [CrossRef]
- Bhapkar, A.R.; Bhame, S. A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. J. Environ. Chem. Eng. 2024, 12, 112553. [Google Scholar] [CrossRef]
- Sreelakshmi, T.; Prasad, A.R.; Joseph, A. Synthesis, characterization, and effective removal of dye pollutants from water bodies using a new ZnO nanocomposite. J. Indian Chem. Soc. 2024, 101, 101183. [Google Scholar] [CrossRef]
- Lu, W.C.; Wu, C.C.; Chang, K.S. Mild hydrothermal synthesis of BiFeO3 films on BiFeO3 seed-layer-coated indium tin oxide substrates and their piezo-related applications. J. Mater. Sci. Mater. Electron. 2020, 31, 13376–13381. [Google Scholar] [CrossRef]
- Pati, P.B.; Abdellah, M.; Diring, S.; Hammarstrm, L.; Odobel, F. Molecular Triad Containing a TEMPO Catalyst Grafted on Mesoporous Indium Tin Oxide as a Photoelectrocatalytic Anode for Visible Light-Driven Alcohol Oxidation. ChemSusChem 2021, 14, 2902–2913. [Google Scholar] [CrossRef]
- Shen, L.; Su, Y.; Zhao, K.; Yu, C.; Tang, J.; Li, Y.; Liu, N. Ligand-controlled photocatalysis of sulfur dots/MoS2 nanocomposite for degradation of dye and antibiotic. J. Alloy. Compd. 2024, 984, 173975. [Google Scholar] [CrossRef]
- Zhao, W.; Cao, J.H.; Liao, J.J.; Liu, Y.; Zeng, X.J.; Shen, J.Y.; Hong, X.K.; Guo, Y.; Zeng, H.H.; Liu, Y.Z. Insights into photocatalytic mechanism over a novel Cu2WS4/MoS2S-scheme heterojunction. Rare Met. 2024, 43, 3118–3133. [Google Scholar] [CrossRef]
- Purvika, A.; Yadav, S.; Jijoe, S.P.; Tenzin, T.; Divya, V.; Shahmoradi, B.; Wantala, K.; Jenkins, D.; Mckay, G.; Shivaraju, H.P. Improved metal-organic frameworks (MOFs) and their application in catalytic CO2 reduction: A review. Mater. Today Sustain. 2024, 26, 100745. [Google Scholar] [CrossRef]
- Qi, Y.; Cai, Z.; Zheng, C.; Cheng, Z.; Fan, S.; Feng, Y.S. Bimetallic synergy significantly enhances the photocatalytic performance of lanthanide porphyrin-based mofs: Efficient photocatalytic oxidation of benzyl alcohol and benzylamine under mild conditions in air. J. Catal. 2024, 429, 115226. [Google Scholar] [CrossRef]
- Lee, W.P.C.; Wong, F.H.; Attenborough, N.K.; Kong, X.Y.; Tan, L.L.; Sumathi, S.; Chai, S.P. Two-dimensional bismuth oxybromide coupled with molybdenum disulphide for enhanced dye degradation using low power energy-saving light bulb. J. Environ. Manag. 2017, 197, 63–69. [Google Scholar] [CrossRef]
- Venkata Reddy, C.; Ravikumar, R.V.S.S.N.; Srinivas, G.; Shim, J.; Cho, M. Structural, optical, and improved photocatalytic properties of CdS/SnO2 hybrid photocatalyst nanostructure. Mater. Sci. Eng. B Adv. 2017, 221, 63–72. [Google Scholar] [CrossRef]
- Date, M.K.; Yang, L.H.; Yang, T.Y.; Wang, K.; Su, T.Y.; Wu, D.C.; Cheuh, Y.L. Three-Dimensional CuO/TiO2 Hybrid Nanorod Arrays Prepared by Electrodeposition in AAO Membranes as an Excellent Fenton-Like Photocatalyst for Dye Degradation. Nanoscale Res. Lett. 2020, 15, 45. [Google Scholar] [CrossRef]
- Tian, J.; Sang, Y.; Yu, G.; Jiang, H.; Mu, X.; Liu, H. A Bi2WO6−Based Hybrid Photocatalyst with Broad Spectrum Photocatalytic Properties under UV, Visible, and Near-Infrared Irradiation. Adv. Mater. 2013, 25, 5075–5080. [Google Scholar] [CrossRef]
- Shafi, P.M.; Dhanabal, R.; Chithambararaj, A.; Velmathi, S.; Bose, A.C. α−MnO2/h−MoO3 Hybrid Material for High Performance Supercapacitor Electrode and Photocatalyst. ACS Sustain. Chem. Eng. 2017, 5, 4757–4770. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, C.; Wang, M.; Guo, Q.; Wang, B.; Luo, W.; Wang, Y.; Zhang, C.; Zhou, L.; Zhang, D.; et al. Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc−Oxide Nanorods Grown on Three−Dimensional (3D) Reduced Graphene Oxide (RGO)/Ni Foam. Materials 2018, 11, 1004. [Google Scholar] [CrossRef]
- Yang, W.; Xiao, X.; Lu, R.; Xie, H.; Xu, M.; Liu, M.; Sun, Q.; Tian, M. Synthesis of novel TiO2/BiOCl@HHSS composites and its photocatalytic activity enhancement under simulated sunlight. RSC Adv. 2016, 6, 101242–101249. [Google Scholar] [CrossRef]
- Palanisamy, G.; Bhuvaneswari, K.; Bharathi, G.; Pazhanivel, T.; Grace, A.N.; Pasha, S.K.K. Construction of magnetically recoverable ZnS-WO3-CoFe2O4 nanohybrid enriched photocatalyst for the degradation of MB dye under visible light irradiation. Chemosphere 2021, 273, 129687. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, R.; Natesan, J.; Archana, K.M.; Rajagopal, R. Photocatalytic degradation of malachite green over differently synthesized nano-α-Fe2O3: A comprehensive pathway. Appl. Nanosc. 2024, 14, 845–873. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Li, P. Biochar/α-Fe2O3/γ-Fe2O3 Heterjunction Composite for Photocatalytic Removal of Amino Black. Chem. Sel. 2024, 9, e202301563. [Google Scholar] [CrossRef]
- Yuting, B.; Meirong, H.; Xiangrui, L.; Sisi, F.; Liping, L.; Shengqian, M. Facile and efficient photocatalyst for degradation of chlortetracycline promoted by H2O2. Inorg. Chem. Front. 2022, 9, 2952–2963. [Google Scholar] [CrossRef]
- Xiang, D.; Lu, S.; Ma, Y.; Zhao, L. Synergistic photocatalysis-fenton reaction of flower-shaped CeO2/Fe3O4 magnetic catalyst for decolorization of high concentration congo red dye. Colloid. Surf. A 2022, 647, 129021. [Google Scholar] [CrossRef]
- Shi, X.F.; Li, N.; Zhao, K.; Cui, G.W.; Tang, B. A dye-sensitized feooh-cnt photocatalyst with three electron transfer channels regulated by hydrogen bonding. Appl. Catal. B Environ. 2013, 136, 334–340. [Google Scholar] [CrossRef]
- Amani-Ghadim, A.R.; Alizadeh, S.; Khodam, F.; Rezvani, Z. Synthesis of rod-like α-FeOOH nanoparticles and its photocatalytic activity in degradation of an azo dye: Empirical kinetic model development. J. Mol. Catal. A Chem. 2015, 408, 60–68. [Google Scholar] [CrossRef]
- Du, W.; Xu, Y.; Wang, Y. Photoinduced Degradation of Orange II on Different Iron (Hydr) oxides in Aqueous Suspension: Rate Enhancement on Addition of Hydrogen Peroxide, Silver Nitrate, and Sodium Fluoride. Langmuir 2008, 24, 175–181. [Google Scholar] [CrossRef]
- Atran, A.A.; Ibrahim, F.A.; Hamdy, M.S. Functionalization and applications of the versatile CeO2 nanoparticles: A review. Inorg. Chem. Comm. 2024, 163, 112359. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, X.; Chen, J.; Shen, B. The removal of toluene by thermoscatalytic oxidation using CeO2-based catalysts:a review. Chemosphere 2024, 351, 141253. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ding, Z.; Li, Y.T.; Li, S.; Wu, P.K.; Hou, Q.; Zheng, Y.; Gao, B.; Huo, K.; Du, W.J.; et al. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage. Rare Met. 2023, 42, 2906–2927. [Google Scholar] [CrossRef]
- Pathak, V.; Lad, P.; Thakkar, A.B. CeO2-ZnO nano composites: Dual-functionality for enhanced photocatalysis and biomedical applications. Inorg. Chem. Comm. 2024, 159, 111738. [Google Scholar] [CrossRef]
- Chai, H.; Zhang, Z.; Sun, J.; Zhong, M.; Liu, M.; Li, J.; Chen, Z.; Gong, B.; Xu, Q.; Huang, Z. Enhancing tetracycline degradation with biomass carbon quantum dot (CQDs)-modified magnetic heterojunction CeO2-Fe3O4 under visible light. J. Environ. Chem. Eng. 2024, 12, 112338. [Google Scholar] [CrossRef]
- Sun, S.P.; Zeng, X.; Li, C.; Lemley, A.T. Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid. Chem. Eng. J. 2014, 244, 44–49. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase−like activity of ferromagnetic nanoparticles. Nat. Nanotechnol 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, L.; Wang, D.; Wang, M.; Lin, Z.; Tang, H. Sono−assisted preparation of highly-efficient peroxidase−like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason. Sonochem. 2010, 17, 526–533. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of 4-Chlorophenol. Environ. Sci. Technol. 2012, 46, 10145–10153. [Google Scholar] [CrossRef]
- He, J.; Tao, X.; Ma, W.; Zhao, J. Heterogeneous Photo-Fenton Degradation of an Azo Dye in Aqueous H2O2/Iron Oxide Dispersions at Neutral pHs. Chem. Lett. 2002, 31, 86–87. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, L.; Hou, Q.; Wu, P.; Zhou, Y.; Ding, Z. Enhanced Oxygen Storage Capacity of Porous CeO2 by Rare Earth Doping. Molecules 2023, 28, 6005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wang, Q.; Li, Y.; Ding, Z. Magnetic Ternary Hybrid Composites as an Efficient Photocatalyst for Degradation of Acid Orange 7 Dye. Catalysts 2024, 14, 880. https://doi.org/10.3390/catal14120880
Xu Y, Wang Q, Li Y, Ding Z. Magnetic Ternary Hybrid Composites as an Efficient Photocatalyst for Degradation of Acid Orange 7 Dye. Catalysts. 2024; 14(12):880. https://doi.org/10.3390/catal14120880
Chicago/Turabian StyleXu, Yaohui, Qin Wang, Yuting Li, and Zhao Ding. 2024. "Magnetic Ternary Hybrid Composites as an Efficient Photocatalyst for Degradation of Acid Orange 7 Dye" Catalysts 14, no. 12: 880. https://doi.org/10.3390/catal14120880
APA StyleXu, Y., Wang, Q., Li, Y., & Ding, Z. (2024). Magnetic Ternary Hybrid Composites as an Efficient Photocatalyst for Degradation of Acid Orange 7 Dye. Catalysts, 14(12), 880. https://doi.org/10.3390/catal14120880