A Mild in-Situ Method to Construct Fe-Doped Cauliflower-Like Rutile TiO2 Photocatalysts for Degradation of Organic Dye in Wastewater
"> Figure 1
<p>Molecular structure of MO.</p> "> Figure 2
<p>XRD patterns of synthesised photocatalysts.</p> "> Figure 3
<p>Partial enlarged detail of XRD patterns of synthesised photocatalysts.</p> "> Figure 4
<p>Raman spectrum of synthesised photocatalysts.</p> "> Figure 5
<p>Representative Scanning Electron Microscopy images of synthesized photocatalysts (<b>a-1</b>, <b>a-2</b>: Rutile TiO<sub>2</sub>; <b>b-1</b>, <b>b-2</b>: 0.5%Fe-TiO<sub>2</sub>).</p> "> Figure 6
<p>TEM and HRTEM images of synthesized photocatalyst. (0.0%Fe-TiO<sub>2</sub>: <b>a-1</b>, <b>a-2</b>; 0.5%Fe-TiO<sub>2</sub>: <b>b-1</b>, <b>b-2</b>; 1.0%Fe-TiO<sub>2</sub>: <b>c-1</b>, <b>c-2</b>; and 2.0%Fe-TiO<sub>2</sub>: <b>d-1</b>, <b>d-2</b>).</p> "> Figure 7
<p>Photo-degradation rate of MO as a function of UV light irradiation time.</p> "> Figure 8
<p>Kinetic plots for photo-degradation of MO.</p> "> Figure 9
<p>N<sub>2</sub> adsorption-desorption and pore diameter distribution of synthesized photocatalysts; (<b>a</b>): 0.0% Fe-TiO<sub>2</sub>, (<b>b</b>): 0.5% Fe-TiO<sub>2</sub> (<b>c</b>): 1.0% Fe-TiO<sub>2</sub> (<b>d</b>): 2.0% Fe-TiO<sub>2</sub>.</p> "> Figure 10
<p>The XPS spectra of Fe-doped photocatalysts.</p> "> Figure 11
<p>EDX spectrum of 0.0% Fe-TiO<sub>2</sub> (<b>a</b>) and 0.5% Fe-TiO<sub>2</sub> (<b>b</b>); The HAADF-STEM image of the observed area of 0.5% Fe-TiO<sub>2</sub> (<b>c</b>), and the corresponding energy-dispersive X-ray spectroscopy (EDX) elements mapping of 0.5% Fe-TiO<sub>2</sub>; Ti (<b>d</b>: yellow), O (<b>e</b>: purple) and Fe element (<b>f</b>: orange ).</p> "> Figure 12
<p>(<b>a</b>) Uv-vis diffuse reflection spectra of synthesised photocatalyst; (<b>b</b>) Band gap derived from Uv-vis diffuse reflection spectra</p> "> Figure 13
<p>Band structures synthesised photocatalyst. (<b>a</b>) 0.0%Fe-TiO<sub>2</sub>; (<b>b</b>) 0.5%Fe-TiO<sub>2</sub>; (<b>c</b>) 1.0%Fe-TiO<sub>2</sub>; (<b>d</b>) 2.0%Fe-TiO<sub>2</sub>).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Phase Analysis of Synthesised Photocatalyst
2.2. The Morphology of Synthesised Photocatalysts
2.3. The Performance of the Synthesized Photocatalyst
3. Discussion
4. Materials and Methods
4.1. Photocatalysts Synthesis
4.2. Photocatalysts Characterization
4.3. Photocatalysts Evaluation
4.4. DFT Calculation Details
5. Conclusions
- This study provided a mild and low cost method for the synthesis the Fe-doped rutile TiO2. The rutile preparation temperature did not exceed 100 °C, which was much lower than the traditional preparation calcination temperature (e.g., 600 °C). TiCl3 was used as a titanium source other than expensive Ti(OC4H9)4. To our knowledge, doping Fe into rutile TiO2 using this method was reported first in this paper.
- The synthesized photocatalysts presented the prominent photoactivity for decomposing organic dye in wastewater. It is difficult to compare with those results reported in the literature, because the catalysts preparation methods and the experimental conditions were usually different. Tong et al. [58] reported a Fe-doped Anatase for the degradation of MO. In their work, at the optimal doping levels of Fe3+ (0.1%) and 6 h UV light irradiation, the degradation rate of MO was 79%; under the same reaction condition, the degradation rate of MO by commercial photocatalyst P25 was only 70%. Leong et al. prepared a Ni(OH)2 decorated rutile TiO2 photocatalyst and the highest removal rates of model compound tetracycline was 68% under 2 h visible light irradiation [59]. So far, our photocatalyst seems to have presented the prominent photoactivity for decomposing organic compounds in wastewater.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jorfi, S.; Barzegar, G.; Ahmadi, M.; Soltani, R.D.C.; Takdastan, A.; Saeedi, R.; Abtahi, M. Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J. Environ. Manag. 2016, 177, 111–118. [Google Scholar] [CrossRef]
- Ellouze, E.; Tahri, N.; Amar, R.B. Enhancement of textile wastewater treatment process using nanofiltration. Desalination 2012, 286, 16–23. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A. review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef]
- Özcan, A.; Ömeroğlu, Ç.; Erdoğan, Y.; Özcan, A.S. Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19. J. Hazard. Mater. 2007, 140, 173–179. [Google Scholar] [CrossRef]
- Jafari, A.J.; Kakavandi, B.; Kalantary, R.R.; Gharibi, H.; Asadi, A.; Azari, A.; Babaei, A.A.; Takdastan, A. Korean Application of mesoporous magnetic carbon composite for reactive dyes removal: Process optimization using response surface methodology. J. Chem. Eng. 2016, 33, 2878–2890. [Google Scholar]
- Ahmadi, M.; Ramavandi, B.; Sahebi, S. Efficient degradation of a biorecalcitrant pollutant from wastewater using a fluidized catalyst-bed reactor. Chem. Eng. Commun. 2015, 202, 1118–1129. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A. review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Tang, W.Z.; An, H. UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 1995, 31, 4158–4170. [Google Scholar] [CrossRef]
- Arslan, I.; Balcioglu, A.I. Advanced oxidation of raw and biotreated textile industry wastewater with O3, H2O2/UV-C and their sequential application. J. Chem. Technol. Biotechnol. 2001, 76, 53–60. [Google Scholar] [CrossRef]
- Hao, O.J.; Kim, H.; Chiang, P.C. Decolorization of wastewater. Crit. Rev. Environ. Sci. Technol. 2000, 30, 449–502. [Google Scholar] [CrossRef]
- Sleiman, M.; Vildozo, D.; Ferronato, C.; Chovelon, J.-M. Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach. Appl. Catal. B Environ. 2007, 77, 1–11. [Google Scholar] [CrossRef]
- Slokar, Y.M.; Le Marechal, A.M. Methods of decoloration of textile wastewaters. Dyes Pigments 1998, 37, 335–356. [Google Scholar] [CrossRef]
- Kuo, W.G. Decolorizing dye wastewater with Fenton’s reagent. Water Res. 1992, 26, 881–886. [Google Scholar] [CrossRef]
- Ince, N.H.; Gonenc, D.T. Treatability of a textile azo dye by UV/H2O2. Environ. Technol. 1997, 18, 179–185. [Google Scholar] [CrossRef]
- Forgacs, E.; Cserhati, T.; Oros, G. Removal of synthetic dyes from wastewaters: A. review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Ani, I.J.; Akpan, U.G.; Olutoye, M.A.; Hameed, B.H. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2 and ZnO-based photocatalysts: Recent development. J. Clean. Prod. 2018, 205, 930–954. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Dutta, B.K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 2004, 112, 269–278. [Google Scholar] [CrossRef]
- Reddy, M.P.; Venugopal, A.; Subrahmanyam, M. Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension. Appl. Catal. B Environ. 2007, 69, 164–170. [Google Scholar] [CrossRef]
- Saquiba, M.; Tariqa, M.A.; Faisala, M.; Muneer, M. Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination 2008, 219, 301–311. [Google Scholar] [CrossRef]
- Jallouli, N.; Pastrana-Martínez, L.M.; Ribeiro, A.R.; Moreira, N.F.; Faria, J.L.; Hentati, O.; Silva, A.M.; Ksibi, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J. 2018, 334, 976–984. [Google Scholar] [CrossRef]
- Mills, A.; Hunte, L. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 108, 1–35. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Reddy, D.R.; Dinesh, G.K.; Anandan, S.; Sivasankar, T. Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO2. Chem. Eng. Process 2016, 99, 10–18. [Google Scholar] [CrossRef]
- Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang, S.K.-Q.; Zhang, Y.L.; Lin, Z. A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrogen Energy 2017, 42, 8418–8449. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, H.; Andino, J.M.; Li, Y. A review of TiO2 nanostructured catalysts for sustainable H2 generation. ACS Catal. 2012, 2, 1817–1828. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile?—Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef] [PubMed]
- Kakuma, Y.; Nosaka, A.Y.; Nosaka, Y. Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Phys. Chem. Chem. Phys. 2015, 17, 18691–18698. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.; Li, D.; Hapgood, K.; Zhang, X.; Wang, H. Ni (OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Appl. Catal. B Environ. 2016, 198, 224–233. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J.M.; Zhu, J.J.; Huang, S.S.; Zhu, X.H.; Ma, G.B. Sonochemical synthesis and microstructure investigation of rod-like nanocrystalline rutile Titania. Mater. Lett. 2003, 57, 4639–4642. [Google Scholar] [CrossRef]
- Yang, S.F.; Liu, Y.H.; Guo, Y.P.; Zhao, J.Z.; Xu, H.F.; Wang, Z.C. Preparation of rutile Titania nanocrystals by liquid method at room temperature. Mater. Chem. Phys. 2002, 77, 501–506. [Google Scholar] [CrossRef]
- Litter, M.I. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Appl. Catal. B Environ. 1999, 23, 89–114. [Google Scholar] [CrossRef]
- Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal. Today 2003, 84, 191–196. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, Z.; Ying, J.Y. Photocatalytic decomposition of halogenated organics over nanocrystalline Titania. Nanostruct. Mater. 1997, 9, 583–586. [Google Scholar] [CrossRef]
- Lepore, G.P.; Langford, C.H.; Vichova, J.; Vlcek, A. Photochemistry and picosecond absorption spectra of aqueous suspensions of a polycrystalline titanium dioxide optically transparent in the visible spectrum. J. Photochem. Photobiol. A Chem. 1993, 75, 67–75. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles. Angew. Chem. Int. Ed. 1994, 33, 1091–1096. [Google Scholar] [CrossRef]
- Dong, Y.L.; Won, J.L.; Jae Sung, S.; Jung, H.K.; Yang, S.K. Electronic surface state of TiO2 electrode doped with transition metals, studied with cluster model and DV-X_ method. Comput. Mater. Sci. 2004, 30, 383–388. [Google Scholar]
- Mesgari, Z.; Gharagozlou, M.; Khosravi, A.; Gharanjig, K. Synthesis, characterization and evaluation of efficiency of new hybrid Pc/Fe-TiO2 nanocomposite as photocatalyst for decolorization of methyl orange using visible light irradiation. Appl. Catal. A Gen. 2012, 411, 139–145. [Google Scholar] [CrossRef]
- Vásquez, G.C.; Peche-Herrero, M.A.; Maestre, D.; Alemán, B.; Ramírez-Castellanos, J.; Cremades, A.; Piqueras, J. Influence of Fe and Al doping on the stabilization of the anatase phase in TiO2 nanoparticles. J. Mater. Chem. C 2014, 2, 10377–10385. [Google Scholar] [CrossRef]
- Yu, J.G.; Zhou, M.H.; Yu, H.G.; Zhang, Q.J.; Yu, Y. Enhanced photoinduced super-hydrophilicity of the sol–gel-derived TiO2 thin films by Fe-doping. Mater. Chem. Phys. 2006, 95, 193–196. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bottcher, C.; Bahnemann, D.W.; Dohrmann, J.K. A comparative study of nanometer sized Fe (III)-doped TiO2 photocatalysts: Synthesis, characterization and activity. J. Mater. Chem. 2003, 13, 2322–2329. [Google Scholar] [CrossRef]
- Zhou, M.H.; Yu, J.G.; Cheng, B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. 2006, 137, 1838–1847. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A. review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Kumar, K.N.; Pr Keizer, K.; Burggraaf, A.J.; Okubo, T.; Nagamoto, H.; Morooka, S. Densification of nanostructured titania assisted by a phase transformation. Nature 1992, 358, 48–51. [Google Scholar] [CrossRef]
- Hardcastle, F.D.; Ishihara, H.; Sharma, R.; Biris, A.S. Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J. Mater. Chem. 2011, 21, 6337–6345. [Google Scholar] [CrossRef]
- Yurdakal, S.; Palmisano, G.; Loddo, V.; Alagoz, O.; Augugliaro, V.; Palmisano, L. Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature. Green Chem. 2009, 11, 510–516. [Google Scholar] [CrossRef]
- Ding, K.; Miao, Z.; Hu, B.; An, G.; Sun, Z.; Han, B.; Liu, Z. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid. Langmuir 2010, 26, 10294–10302. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Jia, Z. Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process. Mater. Lett. 2006, 60, 1753–1757. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, Q.; van de Krol, R. Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles. J. Phys. Chem. C 2012, 116, 7219–7226. [Google Scholar] [CrossRef]
- Choudhury, B.; Verma, R.; Choudhury, A. Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv. 2014, 4, 29314–29323. [Google Scholar] [CrossRef]
- Salari, M.; Konstantinov, K.; Liu, H.K. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J. Mater. Chem. 2011, 21, 5128–5133. [Google Scholar] [CrossRef]
- Wu, Q.; Van De Krol, R. Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: Role of oxygen vacancies and iron dopant. J. Am. Chem. Soc. 2012, 134, 9369–9375. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.C.; Siegel, R.W. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl. Phys. Lett. 1990, 57, 943–945. [Google Scholar] [CrossRef]
- Ma, H.L.; Yang, J.Y.; Dai, Y.; Zhang, Y.B.; Lu, B.; Ma, G.H. Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl. Surf. Sci. 2007, 253, 7497–7500. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Shen, Y.; Li, Y.; Hu, Z.; Chu, J. Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films. Phys. Chem. Chem. Phys. 2011, 13, 13096–13105. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Zhang, J.; Tian, B.; Chen, F.; He, D. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 2008, 155, 572–579. [Google Scholar] [CrossRef]
- Sing, K.S. Siemieniewska. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- He, Z.; Cai, Q.; Fang, H.; Situ, G.; Qiu, J.; Song, S.; Chen, J. Photocatalytic activity of TiO2 containing anatase nanoparticles and rutile nanoflower structure consisting of nanorods. J. Environ. Sci. 2013, 25, 2460–2468. [Google Scholar] [CrossRef]
- Molea, A.; Popescu, V.; Rowson, N.A.; Cojocaru, I.; Dinescu, A.; Dehelean, A.; Lazar, M. Correlation of physicochemical properties with the catalytic performance of fe-doped titanium dioxide powders. Ind. Eng. Chem. Res. 2015, 54, 7346–7351. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, Z.; Niu, M.; Mao, C.; Cao, D.; Cheng, D.; Feng, P.; Sun, Z. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 2014, 6, 10216–10223. [Google Scholar] [CrossRef]
- Liu, X.; Gao, S.; Xu, H.; Lou, Z.; Wang, W.; Huang, B.; Dai, Y. Green synthetic approach for Ti3+ self-doped TiO2−x nanoparticles with efficient visible light photocatalytic activity. Nanoscale 2013, 5, 1870. [Google Scholar] [CrossRef]
- Burdett, J.K.; Hughbanks, T.; Miller, G.J.; Richardson, J.W.; Smith, J.V. Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 1987, 109, 3639–3646. [Google Scholar] [CrossRef]
- Glassford, K.M.; Chelikowsky, J.R. Structural and electronic properties of titanium dioxide. Phys. Rev. B 1992, 46, 1284–1298. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Huo, Y.; Zhu, J. Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. Environ. Sci. Technol. 2007, 41, 4410–4414. [Google Scholar] [CrossRef]
- Wu, H.C.; Li, S.H.; Lin, S.W. Effect of Fe concentration on Fe-doped anatase TiO2 from GGA + U calculations. Int. J. Photoenergy 2012, 2012, 11270–11278. [Google Scholar] [CrossRef]
- Shao, G. Electronic structures of manganese-doped rutile TiO2 from first principles. J. Phys. Chem. C 2008, 112, 18677–18685. [Google Scholar] [CrossRef]
- Brik, M.G.; Sildos, I.; Kiisk, V. First-principles calculations of optical and electronic properties of pure and Sm3+-doped TiO2. Phys. B Condens. Matter 2010, 405, 2450–2456. [Google Scholar] [CrossRef]
- Lee, C.; Ghosez, P.; Gonze, X. Lattice dynamics and dielectric properties of incipient ferroelectric TiO2 rutile. Phys. Rev. B 1994, 50, 13379–13387. [Google Scholar] [CrossRef]
- Xie, Y.; Ding, K.; Liu, Z.; Tao Ro Sun, Z.; Zhang, H.; An, G. In situ controllable loading of ultrafine noble metal particles on titania. J. Am. Chem. Soc. 2009, 131, 6648–6649. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Xin, X.; Wang, Y.; Wang, T.; Wang, X. Unprecedented catalytic performance in disordered nickel niobate through photo-synergistic promotion. Chem. Commun. 2014, 50, 4200–4202. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.; Probert, M.A.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Johannes, M.D.; Mazin, I.I.; Parker, D.S. Effect of doping and pressure on magnetism and lattice structure of iron-based superconductors. Phys. Rev. B 2010, 82, 024527. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.J.; Emmerich, H. An efficient virtual crystal approximation that can be used to treat heterovalent atoms, applied to (1 − x) BiScO3–xPbTiO3. J. Phys. Condens. Matter 2007, 19, 306203. [Google Scholar] [CrossRef]
- Pople, J.A.; Gill, P.M.W.; Handy, N.C. Spin-unrestricted character of Kohn-Sham orbitals for open-shell systems. Int. J. Quantum Chem. 1995, 56, 303–305. [Google Scholar] [CrossRef]
- Íñiguez, J.; Vanderbilt, D.; Bellaiche, L. First-principles study of (BiScO3) 1−x−(PbTiO3) x piezoelectric alloys. Phys. Rev. B 2003, 67, 224107. [Google Scholar] [CrossRef]
- Kim, Y.M.; He, J.; Biegalski, M.D.; Ambaye, H.; Lauter, V.; Christen, H.M.; Pantelides, S.T.; Pennycook, S.J.; Kalinin, S.V.; Borisevich, A.Y. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 2012, 11, 888–894. [Google Scholar] [CrossRef] [PubMed]
Sample | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
0.0%Fe-TiO2 | 69.2 | 0.36 | 26.2 |
0.5%Fe-TiO2 | 120.4 | 0.26 | 10.8 |
1.0%Fe-TiO2 | 115.6 | 0.24 | 10.3 |
2.0%Fe-TiO2 | 107.2 | 0.21 | 10.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Zhang, Y.; Liu, X.; Jin, H.; Lv, H.; He, S.; Hao, H.; Li, C. A Mild in-Situ Method to Construct Fe-Doped Cauliflower-Like Rutile TiO2 Photocatalysts for Degradation of Organic Dye in Wastewater. Catalysts 2019, 9, 426. https://doi.org/10.3390/catal9050426
Shi X, Zhang Y, Liu X, Jin H, Lv H, He S, Hao H, Li C. A Mild in-Situ Method to Construct Fe-Doped Cauliflower-Like Rutile TiO2 Photocatalysts for Degradation of Organic Dye in Wastewater. Catalysts. 2019; 9(5):426. https://doi.org/10.3390/catal9050426
Chicago/Turabian StyleShi, Xiangcheng, Yanbin Zhang, Xiaoyu Liu, Huihui Jin, Haiyang Lv, Shujiao He, Haigang Hao, and Changyan Li. 2019. "A Mild in-Situ Method to Construct Fe-Doped Cauliflower-Like Rutile TiO2 Photocatalysts for Degradation of Organic Dye in Wastewater" Catalysts 9, no. 5: 426. https://doi.org/10.3390/catal9050426
APA StyleShi, X., Zhang, Y., Liu, X., Jin, H., Lv, H., He, S., Hao, H., & Li, C. (2019). A Mild in-Situ Method to Construct Fe-Doped Cauliflower-Like Rutile TiO2 Photocatalysts for Degradation of Organic Dye in Wastewater. Catalysts, 9(5), 426. https://doi.org/10.3390/catal9050426