Development of Simple-To-Use Predictive Models to Determine Thermal Properties of Fe2O3/Water-Ethylene Glycol Nanofluid
<p>Structure of the proposed three layers feed-forward neural network model.</p> "> Figure 2
<p>Flowchart of the Particle Swarm Optimization (PSO)-based optimization algorithm for evolving the weights and biases of the constructed artificial neural networks (ANN).</p> "> Figure 3
<p>Effect of the number of hidden neurons on the performance of the PSO-ANN model in terms of R<sup>2</sup> and MSE values for (<b>a</b>) viscosity (<b>b</b>) thermal conductivity.</p> "> Figure 4
<p>Flowchart of GA-based optimization algorithm to adjust the embedded parameters of LSSVM model.</p> "> Figure 5
<p>Variation of viscosity (<b>a</b>) and thermal conductivity (<b>b</b>) versus volume fraction at different temperatures.</p> "> Figure 6
<p>Regression plot of the proposed vector machine model versus actual viscosity of /ethlyene glycol-water nanofluid.</p> "> Figure 7
<p>Comparison between actual viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid and predicted values by Least Square Support Vector Machine (LSSVM) model versus relevant data index.</p> "> Figure 8
<p>Absolute relative error distribution of the obtained outputs from LSSVM model versus corresponding viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid data points.</p> "> Figure 9
<p>Comparison between predicted and experimental viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid, versus volume fraction (%) at different condition.</p> "> Figure 10
<p>Relative importance of each input variables on the viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid.</p> "> Figure 11
<p>Regression plot of the proposed PSO-ANN model versus actual viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid.</p> "> Figure 12
<p>Comparison between actual viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid and predicted values by PSO-ANN model versus relevant data index.</p> "> Figure 13
<p>Absolute relative error distribution of the obtained outputs from PSO-ANN model versus corresponding viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid data points.</p> "> Figure 14
<p>Comparison between PSO-ANN outputs and experimental viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid, versus volume fraction (%) at different condition.</p> "> Figure 15
<p>Regression plot of the proposed vector machine model versus actual thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid.</p> "> Figure 16
<p>Comparison between actual thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid and predicted values by LSSVM model versus relevant data index.</p> "> Figure 17
<p>Absolute relative error distribution of the obtained outputs from LSSVM model versus corresponding thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid data points.</p> "> Figure 18
<p>Comparison between predicted and experimental thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water mixture, versus volume fraction (%) at different condition.</p> "> Figure 19
<p>Relative importance of each input variables on the thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid.</p> "> Figure 20
<p>Regression plot of the proposed PSO-ANN model versus actual thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid.</p> "> Figure 21
<p>Comparison between actual thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid and predicted values by PSO-ANN model versus relevant data index.</p> "> Figure 22
<p>Absolute relative error distribution of the obtained outputs from PSO-ANN model versus corresponding thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid data points.</p> "> Figure 23
<p>Comparison between PSO-ANN outputs and experimental thermal conductivity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid, versus volume fraction (%) at different condition.</p> "> Figure 24
<p>Detection of the probable doubtful measured viscosity and thermal conductivity data and the applicability domain of the suggested approaches for the viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid. (<b>a</b>) GA-LSSVM model for viscosity prediction (<b>b</b>) PSO-ANN model for viscosity prediction (<b>c</b>) GA-LSSVM model for thermal conductivity prediction (<b>d</b>) PSO-ANN model for thermal conductivity prediction (the H* value is 0.12).</p> "> Figure 24 Cont.
<p>Detection of the probable doubtful measured viscosity and thermal conductivity data and the applicability domain of the suggested approaches for the viscosity of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">F</mi> <msub> <mi mathvariant="normal">e</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math>/ethylene glycol-water nanofluid. (<b>a</b>) GA-LSSVM model for viscosity prediction (<b>b</b>) PSO-ANN model for viscosity prediction (<b>c</b>) GA-LSSVM model for thermal conductivity prediction (<b>d</b>) PSO-ANN model for thermal conductivity prediction (the H* value is 0.12).</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Artificial Neural Network
2.2. Least Squares Support Vector Machines
3. Developed Models
3.1. ANN Model
3.1.1. Data Distribution (Training and Testing Subsets)
3.1.2. Training Method and Transfer Functions
3.1.3. ANN Structure
3.2. LSSVM Model
3.2.1. Data Distribution (Training and Testing Subsets)
3.2.2. Kernel Function
3.2.3. Optimization Approach to Tune the Embedded Parameters ( and )
- Encoding and generating Initial population: First, an array of variables called a chromosome (or a unique solution) is considered to be optimized. Two variables of , are assigned to the chromosome and a mapping practice named encoding is applied between the chromosome and the solution space. An initial population of chromosomes is randomly created after the representation of the candidate solutions.
- Fitness assignment: The mean squared error of all data set used for training is employed as a fitness function to evaluate each chromosome in the population.
- Selection: In this step, the most available triumphant individuals in a population are repeated. The rate of repeat is proportional to their relative quality. In fact, chromosomes which have more appropriate fitness have a higher chance to be chosen.
- Crossover: In this stage, two various solutions are putrefied; afterward, the components are randomly combined in order to generate new solutions.
- Mutation: Using a random way to alter a potential solution.
- Replace: New generated population is utilized for the following generation.
- Stop criterion: This procedure will continue until an acceptable solution is obtained.
4. Results and Discussion
4.1. Viscosity
4.1.1. GA-LSSVM Model for Viscosity
4.1.2. PSO-ANN Model for Viscosity
4.2. Thermal Conductivity
4.2.1. GA-LSSVM Model for Thermal Conductivity
4.2.2. PSO-ANN Model for Thermal Conductivity
4.3. Leverage Approach
5. Conclusions
- Results indicate that the accuracy of the GA-LSSVM model in predicting both thermal conductivity and dynamic viscosity is much higher compared to the PSO-ANN model.
- The highest relative deviations of the proposed GA-LSSVM model viscosity and thermal conductivity are approximately ±5%.
- The R2, MSE, and AARD values for the GA-LSSVM model are in satisfactory range in predicting the viscosity and conductivity.
- ANOVA technique implementation demonstrates that among various input variables, including temperature, concentration, and the mass ratio of EG/water, the mass ratio has the most significant effect on both thermal conductivity and dynamic viscosity.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AARD | average absolute relative deviations |
ANN | Artificial neural network |
ANOVA | Analysis of Variance |
BP | Back Propagation |
EOS | Equation of state |
GA | Genetic Algorithm |
HGAPSO | Hybrid Genetic Algorithm and Particle Swarm Optimization |
ICA | Imperialist Competitive Algorithm |
LSSVM | Least Square Support Vector Machine |
MAE | Mean absolute error (MAE) |
MSE | Mean squared error (MSE) |
PSO | Particle swarm optimization |
R2 | Coefficient of determination |
RBF | Radial Basis Function |
UPSO | Unified Particle Swarm Optimization |
Variables | |
the average of the predicted data | |
the average of the actual data | |
bj | bias |
C | unit conversion factor |
c1 | cognition component |
c2 | social components |
e | error = Actual − Model output |
N | the total number of data points |
oj | output |
r1n and r2n | two random numbers |
t | ime, hr |
vi | velocity of particle i |
Wji | Interconnection Weights in network model |
xi | position of particle i |
yiP | the output of the model |
yiT | the actual at the sampling point i |
Greek Letters | |
µ | viscosity, cp |
γ | Regularization parameter |
δ | absolute relative error |
σ2 | RBF parameter |
activation function | |
the inertia weights |
References
- Ahmadi, M.H.; Ghazvini, M.; Alhuyi Nazari, M.; Ahmadi, M.A.; Pourfayaz, F.; Lorenzini, G.; Ming, T. Renewable energy harvesting with the application of nanotechnology: A review. Int. J. Energy Res. 2018. [Google Scholar] [CrossRef]
- Liang, M.; Liu, Y.; Xiao, B.; Yang, S.; Wang, Z.; Han, H. An analytical model for the transverse permeability of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2018, 43, 17880–17888. [Google Scholar] [CrossRef]
- Xiao, B.; Zhang, X.; Wang, W.E.I.; Long, G.; Chen, H.; Kang, H.A.O.; Ren, W.E.N. A fractal model for water flow through unsaturated porous rocks. Fractals 2018, 26, 1840015. [Google Scholar] [CrossRef]
- Long, G.; Xu, G. The Effects of Perforation Erosion on Practical Hydraulic-Fracturing Applications. SPE J. 2017, 22, 645–659. [Google Scholar] [CrossRef]
- Long, G.; Liu, S.; Xu, G.; Wong, S.-W.; Chen, H.; Xiao, B. A Perforation-Erosion Model for Hydraulic-Fracturing Applications. SPE Prod. Oper. 2018, 33, 770–783. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, W.E.I.; Fan, J.; Chen, H.; Hu, X.; Zhao, D.; Zhang, X.; Ren, W.E.N. Optimization of the fractal-like architecture of porous fibrous materials related to permeability, diffusivity and thermal conductivity. Fractals 2017, 25, 1750030. [Google Scholar] [CrossRef]
- Maddah, H.; Aghayari, R.; Mirzaee, M.; Ahmadi, M.H.; Sadeghzadeh, M.; Chamkha, A.J. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2hybrid nanofluid. Int. Commun. Heat Mass Transf. 2018, 97, 92–102. [Google Scholar] [CrossRef]
- Kahani, M.; Ahmadi, M.H.; Tatar, A.; Sadeghzadeh, M. Development of multilayer perceptron artificial neural network (MLP-ANN) and least square support vector machine (LSSVM) models to predict Nusselt number and pressure drop of TiO2/water nanofluid flows through non-straight pathways. Numer. Heat Transf. Part A Appl. 2018, 74, 1190–1206. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57, 582–594. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Saedodin, S.; Mahmoodi, M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp. Therm. Fluid Sci. 2014, 52, 68–78. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Saedodin, S.; Mahian, O.; Wongwises, S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int. J. Heat Mass Transf. 2014, 73, 186–194. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Akbari, M.; Karimipour, A.; Afrand, M.; Mahian, O.; Wongwises, S. Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties. Int. J. Heat Mass Transf. 2015, 85, 656–666. [Google Scholar] [CrossRef]
- Tabari, Z.T.; Heris, S.Z. Heat Transfer Performance of Milk Pasteurization Plate Heat Exchangers Using MWCNT/Water Nanofluid. J. Dispers. Sci. Technol. 2015, 36, 196–204. [Google Scholar] [CrossRef]
- Salimpour, M.R.; Abdollahi, A.; Afrand, M. An experimental study on deposited surfaces due to nanofluid pool boiling: Comparison between rough and smooth surfaces. Exp. Therm. Fluid Sci. 2017, 88, 288–300. [Google Scholar] [CrossRef]
- Fang, X.; Chen, Y.; Zhang, H.; Chen, W.; Dong, A.; Wang, R. Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 924–940. [Google Scholar] [CrossRef]
- Minakov, A.V.; Pryazhnikov, M.I.; Guzei, D.V.; Zeer, G.M.; Rudyak, V.Y. The experimental study of nanofluids boiling crisis on cylindrical heaters. Int. J. Therm. Sci. 2017, 116, 214–223. [Google Scholar] [CrossRef]
- Keblinski, P.; Phillpot, S.; Choi, S.U.; Eastman, J. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 2002, 45, 855–863. [Google Scholar] [CrossRef]
- Machrafi, H.; Lebon, G. The role of several heat transfer mechanisms on the enhancement of thermal conductivity in nanofluids. Contin. Mech. Thermodyn. 2016, 28, 1461–1475. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D. Numerical modeling of magnetohydrodynamic CuO—Water transportation inside a porous cavity considering shape factor effect. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 705–714. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Hajmohammad, M.H. Thermal conductivity and viscosity optimization of nanodiamond-CO3O4/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM. J. Mol. Liq. 2017, 238, 545–552. [Google Scholar] [CrossRef]
- Abdullah, A.A.; Althobaiti, S.A.; Lindsay, K.A. Marangoni convection in water–alumina nanofluids: Dependence on the nanoparticle size. Eur. J. Mech. B/Fluids 2018, 67, 259–268. [Google Scholar] [CrossRef]
- Toghraie, D.; Chaharsoghi, V.A.; Afrand, M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim. 2016, 125, 527–535. [Google Scholar] [CrossRef]
- Dadjoo, M.; Etesami, N.; Esfahany, M.N. Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid. Appl. Therm. Eng. 2017, 124, 353–361. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Hassani Ahangar, M.R.; Rejvani, M.; Toghraie, D.; Hajmohammad, M.H. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int. Commun. Heat Mass Transf. 2016, 75, 192–196. [Google Scholar] [CrossRef]
- Sadatsakkak, S.A.; Ahmadi, M.H.; Ahmadi, M.A. Implementation of artificial neural-networks to model the performance parameters of Stirling engine. Mech. Ind. 2016, 17, 307. [Google Scholar] [CrossRef]
- Gholipour Khajeh, M.; Maleki, A.; Rosen, M.A.; Ahmadi, M.H. Electricity price forecasting using neural networks with an improved iterative training algorithm. Int. J. Ambient Energy 2018, 39, 147–158. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Ashouri, M.; Razie Astaraei, F.; Ghasempour, R.; Aloui, F. Prediction of performance of Stirling engine using least squares support machine technique. Mech. Ind. 2016, 17, 506. [Google Scholar] [CrossRef]
- Pourkiaei, S.M.; Ahmadi, M.H.; Hasheminejad, S.M. Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network. Mech. Ind. 2016, 17, 105. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Nazari, M.A.; Mahian, O.; Ghasempour, R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J. Therm. Anal. Calorim. 2018, 1–11. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Nazari, M.A.; Ghasempour, R.; Madah, H.; Shafii, M.B.; Ahmadi, M.A. Thermal Conductivity Ratio Prediction of Al2O3/water Nanofluid by Applying Connectionist Methods. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 154–164. [Google Scholar] [CrossRef]
- Ahmadi Nadooshan, A.; Hemmat Esfe, M.; Afrand, M. Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J. Therm. Anal. Calorim. 2018, 131, 2741–2748. [Google Scholar] [CrossRef]
- Alirezaie, A.; Saedodin, S.; Esfe, M.H.; Rostamian, S.H. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO - Engine oil hybrid nanofluids and modelling the results with artificial neural networks. J. Mol. Liq. 2017, 241, 173–181. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Esfandeh, S.; Saedodin, S.; Rostamian, H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 2017, 125, 673–685. [Google Scholar] [CrossRef]
- Afrand, M.; Hemmat Esfe, M.; Abedini, E.; Teimouri, H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Phys. E 2017, 87, 242–247. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Banihashem, S.A.; Ghazvini, M.; Sadeghzadeh, M. Thermo-economic and exergy assessment and optimization of performance of a hydrogen production system by using geothermal energy. Energy Environ. 2018, 29, 1373–1392. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ashouri, M.; Ahmadi, M.H.; Bidi, M.; Sadeghzadeh, M.; Ming, T. Thermoeconomic analysis and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle. Energy Sci. Eng. 2018, 6, 506–522. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Ebadi, M.; Shokrollahi, A.; Majidi, S.M.J. Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Appl. Soft Comput. 2013, 13, 1085–1098. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Van Gestel, T.; De Brabanter, J. Least Squares Support Vector Machines; World Scientific: Singapore, 2002; ISBN 9812381511. [Google Scholar]
- Ramezanizadeh, M.; Ahmadi, M.A.; Ahmadi, M.H.; Alhuyi Nazari, M. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J. Therm. Anal. Calorim. 2018, 1. [Google Scholar] [CrossRef]
- Baghban, A.; Kahani, M.; Nazari, M.A.; Ahmadi, M.H.; Yan, W.-M. Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils. Int. J. Heat Mass Transf. 2019, 128, 825–835. [Google Scholar] [CrossRef]
- Baghban, A.; Pourfayaz, F.; Ahmadi, M.H.; Kasaeian, A.; Pourkiaei, S.M.; Lorenzini, G. Connectionist intelligent model estimates of convective heat transfer coefficient of nanofluids in circular cross-sectional channels. J. Therm. Anal. Calorim. 2018, 132, 1213–1239. [Google Scholar] [CrossRef]
- Syam Sundar, L.; Venkata Ramana, E.; Singh, M.K.; De Sousa, A.C.M. Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem. Phys. Lett. 2012, 554, 236–242. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int. Commun. Heat Mass Transf. 2013, 49, 17–24. [Google Scholar] [CrossRef]
- Sonawane, S.S.; Juwar, V. Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl. Therm. Eng. 2016, 109, 121–129. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Ebadi, M.; Hosseini, S.M. Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach. Fuel 2014, 117, 579–589. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Zeugmann, T.; Poupart, P.; Kennedy, J.; Jin, X.; Han, J.; Saitta, L.; Sebag, M.; Peters, J.; Bagnell, J.A.; Daelemans, W.; et al. Particle Swarm Optimization. In Encyclopedia of Machine Learning; Springer US: Boston, MA, USA, 2011; pp. 760–766. [Google Scholar]
- Kennedy, J. Swarm Intelligence. In Handbook of Nature-Inspired and Innovative Computing; Kluwer Academic Publishers: Boston, MA, USA, 2006; pp. 187–219. [Google Scholar]
- Ahmadi, M.A.; Ebadi, M. Evolving smart approach for determination dew point pressure through condensate gas reservoirs. Fuel 2014, 117, 1074–1084. [Google Scholar] [CrossRef]
- Fazeli, H.; Soleimani, R.; Ahmadi, M.-A.; Badrnezhad, R.; Mohammadi, A.H. Experimental Study and Modeling of Ultrafiltration of Refinery Effluents Using a Hybrid Intelligent Approach. Energy Fuels 2013, 27, 3523–3537. [Google Scholar] [CrossRef]
Type | Value/Comment |
---|---|
Input layer | 3 |
Hidden layer | 8 |
Output layer | 2 |
Hidden layer activation function | Logsig |
Output layer activation function | Purelin |
Number of datum used for training | 100 |
Number of datum used for testing | 26 |
Number of max iterations | 1000 |
c1 and c2 in Equation (15) | 2 |
Number of particles | 25 |
Type | Value/Comment |
---|---|
Input layer | 2 |
Output layer | 1 |
Kernel function | RBF kernel function |
Number of datum used for training | 100 |
Number of datum used for testing | 26 |
GA Population size | 1000 |
Max. number of generations | 1000 |
Crossover rate | 0.82 |
Mutation rate | 0.02 |
Training Set | |
R2 | 0.9995 |
Average absolute relative deviation | 2.8194 |
mean square error | 0.01387 |
N | 100 |
Test Set | |
R2 | 0.9985 |
Average absolute relative deviation | 2.1923 |
mean square error | 0.433 |
N | 26 |
Total | |
R2 | 0.9993 |
Average absolute relative deviation | 2.7828 |
mean square error | 0.0156 |
N | 126 |
Statistical Parameter | LSSVM | PSO-ANN |
---|---|---|
(MSE) | 0.0156 | 0.3541 |
R2 | 0.9993 | 0.9734 |
AARD | 2.7828 | 13.492 |
Training Set | |
R2 | 0.9921 |
Average absolute relative deviation | 2.43 |
mean square error | 0.00021 |
N | 100 |
Test Set | |
R2 | 0.942 |
Average absolute relative deviation | 2.192 |
mean square error | 0.0001 |
N | 26 |
Total | |
R2 | 0.9931 |
Average absolute relative deviation | 2.3809 |
mean square error | 0.00019 |
N | 126 |
Statistical Parameter | LSSVM | PSO-ANN |
---|---|---|
(MSE) | 0.00019 | 0.00338 |
R2 | 0.9931 | 0.9078 |
AARD | 2.3809 | 10.761 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, M.H.; Ghahremannezhad, A.; Chau, K.-W.; Seifaddini, P.; Ramezannezhad, M.; Ghasempour, R. Development of Simple-To-Use Predictive Models to Determine Thermal Properties of Fe2O3/Water-Ethylene Glycol Nanofluid. Computation 2019, 7, 18. https://doi.org/10.3390/computation7010018
Ahmadi MH, Ghahremannezhad A, Chau K-W, Seifaddini P, Ramezannezhad M, Ghasempour R. Development of Simple-To-Use Predictive Models to Determine Thermal Properties of Fe2O3/Water-Ethylene Glycol Nanofluid. Computation. 2019; 7(1):18. https://doi.org/10.3390/computation7010018
Chicago/Turabian StyleAhmadi, Mohammad Hossein, Ali Ghahremannezhad, Kwok-Wing Chau, Parinaz Seifaddini, Mohammad Ramezannezhad, and Roghayeh Ghasempour. 2019. "Development of Simple-To-Use Predictive Models to Determine Thermal Properties of Fe2O3/Water-Ethylene Glycol Nanofluid" Computation 7, no. 1: 18. https://doi.org/10.3390/computation7010018
APA StyleAhmadi, M. H., Ghahremannezhad, A., Chau, K. -W., Seifaddini, P., Ramezannezhad, M., & Ghasempour, R. (2019). Development of Simple-To-Use Predictive Models to Determine Thermal Properties of Fe2O3/Water-Ethylene Glycol Nanofluid. Computation, 7(1), 18. https://doi.org/10.3390/computation7010018