Potentiating Virus-like Particles for Mucosal Vaccination Using Material Science Approaches
<p>(<b>A</b>) Stability of virus-like particle (VLP) vaccines on mucosal surfaces is a critical factor for eliciting robust immune responses. Key determinants of antigen stability include interactions between VLPs and mucin glycoproteins leading to subsequent clearance in flowing mucus, destabilization by high concentration of proteases, aggregation due to variations in pH or secretory immunoglobulin A (sIgA), and mechanical agitation. <math display="inline"><semantics> <mrow> <mi>ξ</mi> </mrow> </semantics></math> denotes mucus porosity. (<b>B</b>) Atomic resolution structure of several VLPs including adeno-associated virus type 2 (AAV2) (PDB DOI: <a href="https://doi.org/10.2210/pdb5IPI/pdb" target="_blank">https://doi.org/10.2210/pdb5IPI/pdb</a>), the VLP constructed from the coat protein of Acinetobacter phage (AP205 VLP) (PDB DOI: <a href="https://doi.org/10.2210/pdb5LQP/pdb" target="_blank">https://doi.org/10.2210/pdb5LQP/pdb</a>), and cowpea mosaic virus (CPMV) (PDB DOI: <a href="https://doi.org/10.2210/pdb5A33/pdb" target="_blank">https://doi.org/10.2210/pdb5A33/pdb</a>). (<b>C</b>) Genetic fusion approach for VLP vaccine production: Antigens are genetically fused to coat proteins, enabling a one-step cytoplasmic assembly process (1) to generate the VLP vaccine. (<b>D</b>) Chemical conjugation approach for VLP vaccine production: Antigens are chemically attached to preassembled capsids. The process involves (1) cytoplasmic assembly of the capsid and (2) attachment of antigens to coat proteins via molecular linkers, resulting in the final VLP vaccine. (<b>E</b>) Tag/Catcher conjugation approach for VLP vaccine production: Coat proteins fused with Catcher proteins are assembled into capsids (1) during cytoplasmic assembly. In a subsequent step (2), antigens labeled with specific Tag peptides are conjugated to the Catcher proteins on the capsid surface, forming the final VLP vaccine. Alternatively, Tag peptide can be conjugated to the capsid, and Catcher protein to the antigen. Panel (<b>A</b>) is adapted from Ali et al.; Copyright © 2024 The Authors. Published by the American Chemical Society. This publication is licensed under CC-BY 4.0.</p> "> Figure 2
<p>Examples of recent virus-like particle (VLP)-based mucosal vaccines against viral and bacterial infections. (<b>A</b>) Schematic and transmission electron microscopy (TEM) image of P22-HA<sub>head</sub> VLP vaccine. Scale bar 100 nm. (<b>B</b>) Representative example of immunity induced by P22-HA<sub>head</sub> vaccination, showing the survival of immunized mice following exposure to a lethal virus challenge. (<b>C</b>) Schematic and cryo-TEM image of T4-CoV-2 VLP vaccine and T4-HSΔ (T4 vector control lacking outer capsid proteins Hoc and Soc, or any SARS-CoV-2 antigens). The red arrowheads indicate the S-trimer displayed on capsid surface. Scale bar 100 nm. (<b>D</b>,<b>E</b>) Selected examples of mucosal immunological response, showing anti-receptor binding domain (anti-RBD) IgA (<b>D</b>) and anti-spike ectodomain trimer (anti-Secto) IgA (<b>E</b>) titers in bronchoalveolar lavage fluid. Data presented as mean ± SEM, pooled from three independent experiments (n = 12 for T4-CoV-2, n = 10 for T4-HSD, and n = 5 for PBS). Titers between the intramuscular (i.m.) and intranasal (i.n.) routes were compared using two-way ANOVA (**** <span class="html-italic">p</span> < 0.0001). (<b>F</b>) Schematic and TEM image of SliC-AP205 VLP vaccine. Scale bar 200 nm. (<b>G</b>,<b>H</b>) Selected examples of immunological responses showing total IgG, IgG1, IgG2a, and IgA titers in vaginal lavage after subcutaneous immunization of mice with SpyCatcher-conjugated VLP (cVLP) alone, SliC with the N-terminal SpyTag (N-SliC) alone, or N-SliC-VLP vaccine (<b>G</b>) and IgA titers in vaginal lavages after subcutaneous and intranasal immunizations of mice with N-SliC-VLP vaccine with AddaVax adjuvant, N-SliC-VLP vaccine with CpG adjuvant, N-SliC, cVLP with AddaVax adjuvant, cVLP with CpG adjuvant, or PBS (<b>H</b>). Graphs show geometric mean titers with error bars representing 95% confidence intervals. Statistical significance among groups was determined using the Kruskal-Wallis test with Dunn’s multiple comparisons. * <span class="html-italic">p</span> < 0.05. Panels (<b>A</b>) and (<b>B</b>) are adapted with permission from Sharma et al., Copyright © 2020, American Chemical Society. Panels (<b>C</b>), (<b>D</b>) and (<b>E</b>) are adapted from Zhu, Ananthaswamy et al. and Zhu, Jain et al., respectively, under the terms of Creative Commons Attribution Noncommercial License 4.0 (CC BY-NC) and Creative Com-mons Attribution 4.0 International license. Panels (<b>F</b>), (<b>G</b>) and (<b>H</b>) are adapted from Martinez et al. under the terms of Creative Commons Attribution 4.0 International license.</p> "> Figure 3
<p>(<b>A</b>) Schematic representation of one-end conjugation of polymers to virus-like particle (VLP) capsids, or conjugation from both ends (crosslinking) using bifunctional polymers. Crosslinking can be on the exterior or interior capsid surfaces or both. (<b>B</b>) A cut section of agarose gel electrophoresis of native AP205 VLP, and PEGx-crosslinked AP205 VLPs (bPEG<sub>x</sub>-, where x is the number of monomers) and simply PEGylated AP205 VLP (mPEG<sub>25</sub>−) in pig gastric fluid at pH 3.0. Incubation times are indicated. Arrows at 5 min indicate stable capsids in gastric fluid. The complete gel can be found in Ref. [<a href="#B68-colloids-08-00068" class="html-bibr">68</a>]. (<b>C</b>) Confocal microscopy images of the distribution of VLPs on human nasal epithelial tissue with motile cilia (top) and on human nasal epithelial tissue with non-motile cilia (bottom). Cyan boxes show areas of confocal microscopy along the diameter of the tissue culture. (<b>D</b>,<b>E</b>) Generation of serum IgG antibodies upon subcutaneous immunization of mice with native AP205 VLP and PEG-crosslinked AP205 VLPs, against AP205 coat protein (<b>D</b>) and against PEG (<b>E</b>). Statistical significance was determined by ordinary one-way ANOVA with Dunnett’s multiple comparisons test, with a single pooled variance on log-normalized data (* <span class="html-italic">p</span> = 0.0332; ** <span class="html-italic">p</span> = 0.0021; *** <span class="html-italic">p</span> = 0.0002). (<b>F</b>) Samples of physalis mosaic virus (PhMV) and crosslinked PhMV (EE-PhMV) at various temperatures, together with TEM images showing thermally induced morphological changes to PhMV and stability of EE-PhMV at temperature range 25–90 °C. Scale bar 100 nm. Panel (<b>B</b>) to (<b>E</b>) is adapted from Ali et al.; Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0. Panel (<b>F</b>) is reprinted with permission from Wu et al. Copyright 2024 American Chemical Society.</p> "> Figure 4
<p>(<b>A</b>,<b>B</b>) Schematics of virus-like particle (VLP) vaccines incorporated in polymer matrices for protection against proteases and secretory immunoglobulin A (sIgA): spray-dried microparticles (<b>A</b>) and hydrogels (<b>B</b>). (<b>C</b>) Scanning electron microscopy (SEM) image of spray-dried microparticles containing M2e5x VLPs, and micropores on mouse skin created by ablative laser. (<b>D</b>) Representative immune response showing serum IgG levels generated after immunization with inactivated PR8 H1N1 and M2e5x VLP + Alhydrogel<sup>®</sup> + MPL-A<sup>®</sup> microparticles. Data are expressed as mean ± standard deviation (SD). For multiple comparisons, one-way ANOVA was performed with Tukey’s post hoc test. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant (**** <span class="html-italic">p</span> < 0.0001). (<b>E</b>,<b>F</b>) Experimental settings used for in vitro release analysis of CPMV from hydrogel (<b>E</b>), and data showing the release of hydrogel-incorporated Cy5-CPMV (F1, F2, and F3 samples) versus free Cy5-CPMV/PBS at 37 °C (<b>F</b>). Hydrogel formulations contained 4.5 mg/ml CPMV dispersed in low molecular weight (MW), medium MW, and high MW chitosan, and named F1, F2, and F3, respectively. (<b>G</b>) TEM images of Cy5-CPMV released from hydrogels in vitro, showing the integrity and stability of VLPs within the hydrogel matrix. (<b>H</b>) Example of immunological response in mice vaccinated with hydrogel-incorporated CPMV Covid-19 vaccine. Blank F3: negative control, F3: 200 µg of CPMV vaccine in hydrogel, 200:200 µg of CPMV vaccine in PBS, and 100 (×2): prime/boot immunization with 100 µg of CPMV vaccine in PBS. Data were statistically analyzed using one-way ANOVA with Tukey’s multiple comparison test or two-way ANOVA with pairwise comparisons followed by Holm-Šidák correction. Asterisks in the figures indicate significant differences between groups (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001). Panels (<b>C</b>) and (<b>D</b>) are adapted from Gomes et al. under an open access Creative Common CC BY license. Panels (<b>E</b>) to (<b>H</b>) are adapted with permission from Nkanga et al., Copyright © 2022 American Chemical Society.</p> "> Figure 5
<p>(<b>A</b>) Schematic and optical image of cucumber mosaic virus containing a tetanus toxin-derived peptide, CuMV<sub>TT</sub>, decorating microcrystalline tyrosine (MCT). Scale bar 20 µm. (<b>B</b>) Representative immunological response, showing the percentage of CD11b+ AF488-labeled CuMV<sub>TT</sub> cells in tumor after 1 or 5 days of intratumoral injection. Comparisons involving more than two groups were performed using one-way analysis of variance (ANOVA), while comparisons between two groups were conducted using the non-parametric Student’s <span class="html-italic">t</span>-test. Statistical significance is indicated as follows: **** <span class="html-italic">p</span> < 0.0001; *** <span class="html-italic">p</span> < 0.001; ** <span class="html-italic">p</span> < 0.01; ns = not significant. (<b>C</b>) Cryo-TEM image of native bacteriophage Qβ, and schematic of Qβ in a hexagonal arrangement induced by polycation pMETAC1 interactions. Scale bar 30 nm. (<b>D</b>) Infectivity of native Qβ, Qβ/pMETAC1 suprastructure, and Qβ/pMETAC1 suprastructure + centrifuge (i.e., nanostructures separated from the liquid phase as macroscopic aggregates using centrifugation (inset) and resuspended in fresh medium). Panels (<b>A</b>,<b>B</b>) are reproduced from “In situ delivery of nanoparticles formulated with micron-sized crystals protects from murine melanoma”, Mohsen et al., 10, e004643, 2022 [<a href="#B85-colloids-08-00068" class="html-bibr">85</a>] with permission from BMJ Publishing Group Ltd., London, UK; Panels (<b>C</b>,<b>D</b>) are reproduced from Tran et al. [<a href="#B86-colloids-08-00068" class="html-bibr">86</a>] under the terms of the Creative Commons CC BY license.</p> ">
Abstract
:1. Introduction
2. Mucosal Vaccination Using Virus-like Particles
2.1. Vaccination Against Viruses (Seasonal Influenza A & SARS-CoV-2)
2.2. Vaccination Against Bacteria (Enterotoxigenic Escherichia coli & Neisseria Gonorrhoeae)
2.3. Vaccination Against Parasites (Toxoplasma Gondii)
3. Material Science-Based Approaches That Can Potentiate Mucosal Vaccination Using Virus-like Particles
3.1. Stabilization by Crosslinking Capsid Coat Proteins Using Bifunctional Polymers
3.2. Protection Against Enzymes and sIgA and Achieving Sustained Release by Incorporation in Polymer Matrices
3.3. Sustained Delivery of Antigens from Crystalline VLP Structures
4. Discussion
4.1. Stability Enhancements Through Material Science Approaches
4.2. Delivery Strategies Through Material Science Innovations
4.3. Benefits Beyond Mucosal Vaccinations: Material Science Solutions for Vaccine Stability
4.4. Regulatory Challenges
5. Conclusions
6. Future Directions
6.1. Refining Mucosal Models for Preclinical Testing
6.2. Enhancing VLP Stability in Mucosal Environments
6.3. Optimizing Antigen Delivery and Immune Response
6.4. Investigating New Biomaterials for VLP Delivery
6.5. Interdisciplinary Synergy in Advancing Mucosal Vaccines
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bansil, R.; Turner, B.S. The biology of mucus: Composition, synthesis and organization. Adv. Drug Deliv. Rev. 2018, 124, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45–S53. [Google Scholar] [CrossRef] [PubMed]
- Ogra, P.L.; Faden, H.; Welliver, R.C. Vaccination Strategies for Mucosal Immune Responses. Clin. Microbiol. Rev. 2001, 14, 430–445. [Google Scholar] [CrossRef]
- Boyaka, P.N. Inducing Mucosal IgA: A Challenge for Vaccine Adjuvants and Delivery Systems. J. Immunol. 2017, 199, 9–16. [Google Scholar] [CrossRef]
- Bleier, B.S.; Ramanathan, M.; Lane, A.P. COVID-19 Vaccines May Not Prevent Nasal SARS-CoV-2 Infection and Asymptomatic Transmission. Otolaryngol. Neck Surg. 2020, 164, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Foged, C. 25—Nanoparticles for Mucosal Vaccine Delivery. In Nanoengineered Biomaterials for Advanced Drug Delivery; Woodhead Publishing Series in Biomaterials: Abington, UK, 2020; pp. 603–646. [Google Scholar] [CrossRef]
- Kavčič, L.; Kežar, A.; Koritnik, N.; Žnidarič, M.T.; Klobučar, T.; Vičič, Ž.; Merzel, F.; Holden, E.; Benesch, J.L.P.; Podobnik, M. From structural polymorphism to structural metamorphosis of the coat protein of flexuous filamentous potato virus Y. Commun. Chem. 2024, 7, 1–14. [Google Scholar] [CrossRef]
- Lua, L.H.L.; Connors, N.K.; Sainsbury, F.; Chuan, Y.P.; Wibowo, N.; Middelberg, A.P.J. Bioengineering virus-like particles as vaccines. Biotechnol. Bioeng. 2014, 111, 425–440. [Google Scholar] [CrossRef]
- Brune, K.D.; Howarth, M. New Routes and Opportunities for Modular Construction of Particulate Vaccines: Stick, Click, and Glue. Front. Immunol. 2018, 9, 1432. [Google Scholar] [CrossRef]
- Donaldson, B.; Lateef, Z.; Walker, G.F.; Young, S.L.; Ward, V.K. Virus-like particle vaccines: Immunology and formulation for clinical translation. Expert Rev. Vaccines 2018, 17, 833–849. [Google Scholar] [CrossRef]
- Olmsted, S.S.; Padgett, J.L.; Yudin, A.I.; Whaley, K.J.; Moench, T.R.; Cone, R.A. Diffusion of Macromolecules and Virus-Like Particles in Human Cervical Mucus. Biophys. J. 2001, 81, 1930–1937. [Google Scholar] [CrossRef]
- Lai, S.K.; Wang, Y.-Y.; Hida, K.; Cone, R.; Hanes, J. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc. Natl. Acad. Sci. USA 2009, 107, 598–603. [Google Scholar] [CrossRef]
- Abdulkarim, M.; Agulló, N.; Cattoz, B.; Griffiths, P.; Bernkop-Schnürch, A.; Borros, S.G.; Gumbleton, M. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles. Eur. J. Pharm. Biopharm. 2015, 97, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Armanious, A.; Radiom, M.; Mezzenga, R. Recent experimental advances in probing the colloidal properties of viruses. Curr. Opin. Colloid Interface Sci. 2023, 66, 101703. [Google Scholar] [CrossRef]
- De Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979. [Google Scholar]
- Rubinstein, R.; Colby, R.H. Polymer Physics; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Kirch, J.; Schneider, A.; Abou, B.; Hopf, A.; Schaefer, U.F.; Schneider, M.; Schall, C.; Wagner, C.; Lehr, C.-M. Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. Proc. Natl. Acad. Sci. USA 2012, 109, 18355–18360. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.K.; Wang, Y.Y.; Wirtz, D.; Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 2009, 61, 86–100. [Google Scholar] [CrossRef]
- Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and Mucociliary Clearance. Cold Spring Harb. Perspect. Biol. 2017, 9, a028241. [Google Scholar] [CrossRef]
- Duncan, G.A.; Kim, N.; Colon-Cortes, Y.; Rodriguez, J.; Mazur, M.; Birket, S.E.; Rowe, S.M.; West, N.E.; Livraghi-Butrico, A.; Boucher, R.C.; et al. An Adeno-Associated Viral Vector Capable of Penetrating the Mucus Barrier to Inhaled Gene Therapy. Mol. Ther. Methods Clin. Dev. 2018, 9, 296–304. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Manzenrieder, F.; Luxenhofer, R.; Retzlaff, M.; Jordan, R.; Finn, M.G. Stabilization of Virus-like Particles with Poly(2-oxazoline)s. Angew. Chem. Int. Ed. 2011, 50, 2601–2605. [Google Scholar] [CrossRef]
- Lee, P.W.; Shukla, S.; Wallat, J.D.; Danda, C.; Steinmetz, N.F.; Maia, J.; Pokorski, J.K. Biodegradable Viral Nanoparticle/Polymer Implants Prepared via Melt-Processing. ACS Nano 2017, 11, 8777–8789. [Google Scholar] [CrossRef]
- Luzuriaga, M.A.; Welch, R.P.; Dharmarwardana, M.; Benjamin, C.E.; Li, S.; Shahrivarkevishahi, A.; Popal, S.; Tuong, L.H.; Creswell, C.T.; Gassensmith, J.J. Enhanced Stability and Controlled Delivery of MOF-Encapsulated Vaccines and Their Immunogenic Response In Vivo. ACS Appl. Mater. Interfaces 2019, 11, 9740–9746. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.P.; Koutsonanos, D.G.; del Pilar Martin, M.; Lee, J.W.; Zarnitsyn, V.; Choi, S.-O.; Murthy, N.; Compans, R.W.; Skountzou, I.; Prausnitz, M.R. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 2010, 16, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Kines, R.C.; Zarnitsyn, V.; Johnson, T.R.; Pang, Y.-Y.S.; Corbett, K.S.; Nicewonger, J.D.; Gangopadhyay, A.; Chen, M.; Liu, J.; Prausnitz, M.R.; et al. Vaccination with Human Papillomavirus Pseudovirus-Encapsidated Plasmids Targeted to Skin Using Microneedles. PLoS ONE 2015, 10, e0120797. [Google Scholar] [CrossRef] [PubMed]
- Boone, C.E.; Wang, C.; Lopez-Ramirez, M.A.; Beiss, V.; Shukla, S.; Chariou, P.L.; Kupor, D.; Rueda, R.; Wang, J.; Steinmetz, N.F. Active Microneedle Administration of Plant Virus Nanoparticles for Cancer In Situ Vaccination Improves Immunotherapeutic Efficacy. ACS Appl. Nano Mater. 2020, 3, 8037–8051. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Rivera, O.A.; Shin, M.D.; Chen, A.; Beiss, V.; Moreno-Gonzalez, M.A.; Lopez-Ramirez, M.A.; Reynoso, M.; Wang, H.; Hurst, B.L.; Wang, J.; et al. Trivalent Subunit Vaccine Candidates for COVID-19 and Their Delivery Devices. J. Am. Chem. Soc. 2021, 143, 14748–14765. [Google Scholar] [CrossRef]
- Kim, M.-C.; Lee, J.W.; Choi, H.-J.; Lee, Y.-N.; Hwang, H.S.; Lee, J.; Kim, C.; Lee, J.S.; Montemagno, C.; Prausnitz, M.R.; et al. Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection. J. Control. Release 2015, 210, 208–216. [Google Scholar] [CrossRef]
- de Oliveira, J.F.A.; Zhao, Z.; Xiang, Y.; Shin, M.D.; Villaseñor, K.E.; Deng, X.; Shukla, S.; Chen, S.; Steinmetz, N.F. COVID-19 vaccines based on viral nanoparticles displaying a conserved B-cell epitope show potent immunogenicity and a long-lasting antibody response. Front. Microbiol. 2023, 14, 1117494. [Google Scholar] [CrossRef]
- Shao, S.; Ortega-Rivera, O.A.; Ray, S.; Pokorski, J.K.; Steinmetz, N.F. A Scalable Manufacturing Approach to Single Dose Vaccination against HPV. Vaccines 2021, 9, 66. [Google Scholar] [CrossRef]
- Chung, Y.H.; Church, D.; Koellhoffer, E.C.; Osota, E.; Shukla, S.; Rybicki, E.P.; Pokorski, J.K.; Steinmetz, N.F. Integrating plant molecular farming and materials research for next-generation vaccines. Nat. Rev. Mater. 2021, 7, 372–388. [Google Scholar] [CrossRef]
- Shields, C.W.; Wang, L.L.; Evans, M.A.; Mitragotri, S. Materials for Immunotherapy. Adv. Mater. 2019, 32, e1901633. [Google Scholar] [CrossRef]
- Yang, T.; Chen, Y.; Xu, Y.; Liu, X.; Yang, M.; Mao, C. Viruses as biomaterials. Mater. Sci. Eng. R Rep. 2023, 153, 100715. [Google Scholar] [CrossRef]
- Pushko, P.; Pumpens, P.; Grens, E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013, 56, 141–165. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.O.; Kafai, N.M.; Dmitriev, I.P.; Fox, J.M.; Smith, B.K.; Harvey, I.B.; Chen, R.E.; Winkler, E.S.; Wessel, A.W.; Case, J.B.; et al. A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell 2020, 183, 169–184.e13. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, Z.; Wohlford-Lenane, C.; Meyerholz, D.K.; Channappanavar, R.; An, D.; Perlman, S.; McCray, P.B.; He, B. Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection. mBio 2020, 11, e00554-20. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.A.; Ball, J.M.; Krater, S.S.; Pacheco, S.E.; Clements, J.D.; Estes, M.K. Recombinant Norwalk Virus-Like Particles Administered Intranasally to Mice Induce Systemic and Mucosal (Fecal and Vaginal) Immune Responses. J. Virol. 2001, 75, 9713–9722. [Google Scholar] [CrossRef]
- Tamminen, K.; Malm, M.; Vesikari, T.; Blazevic, V. Mucosal Antibodies Induced by Intranasal but Not Intramuscular Immunization Block Norovirus GII.4 Virus-Like Particle Receptor Binding. Viral Immunol. 2016, 29, 315–319. [Google Scholar] [CrossRef]
- Shapiro, J.R.; Andreani, G.; Dubé, C.; Berubé, M.; Bussière, D.; Couture, M.M.-J.; Dargis, M.; Hendin, H.E.; Landry, N.; Lavoie, P.-O.; et al. Development and characterization of a plant-derived norovirus-like particle vaccine. Vaccine 2023, 41, 6008–6016. [Google Scholar] [CrossRef]
- Shi, W.; Liu, J.; Huang, Y.; Qiao, L. Papillomavirus Pseudovirus: A Novel Vaccine To Induce Mucosal and Systemic Cytotoxic T-Lymphocyte Responses. J. Virol. 2001, 75, 10139–10148. [Google Scholar] [CrossRef]
- Niikura, M.; Takamura, S.; Kim, G.; Kawai, S.; Saijo, M.; Morikawa, S.; Kurane, I.; Li, T.-C.; Takeda, N.; Yasutomi, Y. Chimeric Recombinant Hepatitis E Virus-like Particles as an Oral Vaccine Vehicle Presenting Foreign Epitopes. Virology 2002, 293, 273–280. [Google Scholar] [CrossRef]
- Huang, Z.; Elkin, G.; Maloney, B.J.; Beuhner, N.; Arntzen, C.J.; Thanavala, Y.; Mason, H.S. Virus-like particle expression and assembly in plants: Hepatitis B and Norwalk viruses. Vaccine 2004, 23, 1851–1858. [Google Scholar] [CrossRef]
- Mason, H.S.; Ball, J.M.; Shi, J.J.; Jiang, X.; Estes, M.K.; Arntzen, C.J. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA 1996, 93, 5335–5340. [Google Scholar] [CrossRef] [PubMed]
- Modelska, A.; Dietzschold, B.; Sleysh, N.; Fu, Z.F.; Steplewski, K.; Hooper, D.C.; Koprowski, H.; Yusibov, V. Immunization against rabies with plant-derived antigen. Proc. Natl. Acad. Sci. USA 1998, 95, 2481–2485. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Yadav, R.; Kunda, N.K.; Anderson, D.; Bruckner, E.; Miller, E.K.; Basu, R.; Muttil, P.; Tumban, E. Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head & neck cancers and cervical cancer. Antivir. Res. 2019, 166, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Shepardson, K.; Johns, L.L.; Wellham, J.; Avera, J.; Schwarz, B.; Rynda-Apple, A.; Douglas, T. A Self-Adjuvanted, Modular, Antigenic VLP for Rapid Response to Influenza Virus Variability. ACS Appl. Mater. Interfaces 2020, 12, 18211–18224. [Google Scholar] [CrossRef]
- Zhu, J.; Ananthaswamy, N.; Jain, S.; Batra, H.; Tang, W.-C.; Lewry, D.A.; Richards, M.L.; David, S.A.; Kilgore, P.B.; Sha, J.; et al. A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Sci. Adv. 2021, 7, eabh1547. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jain, S.; Sha, J.; Batra, H.; Ananthaswamy, N.; Kilgore, P.B.; Hendrix, E.K.; Hosakote, Y.M.; Wu, X.; Olano, J.P.; et al. A Bacteriophage-Based, Highly Efficacious, Needle- and Adjuvant-Free, Mucosal COVID-19 Vaccine. mBio 2022, 13, e0182222. [Google Scholar] [CrossRef]
- Sun, Y.; Kim, S.W. Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Anim. Nutr. 2017, 3, 322–330. [Google Scholar] [CrossRef]
- Aves, K.-L.; Guerra, P.R.; Fresno, A.H.; Saraiva, M.M.S.; Cox, E.; Bækbo, P.J.; Nielsen, M.A.; Sander, A.F.; Olsen, J.E. A Virus-like Particle-Based F4 Enterotoxigenic Escherichia coli Vaccine Is Inhibited by Maternally Derived Antibodies in Piglets but Generates Robust Responses in Sows. Pathogens 2023, 12, 1388. [Google Scholar] [CrossRef]
- Unemo, M.; Nicholas, R.A. Emergence of Multidrug-Resistant, Extensively Drug-Resistant and Untreatable Gonorrhea. Futur. Microbiol. 2012, 7, 1401–1422. [Google Scholar] [CrossRef]
- Martinez, F.G.; Zielke, R.A.; Fougeroux, C.E.; Li, L.; Sander, A.F.; Sikora, A.E. Development of a Tag/Catcher-mediated capsid virus-like particle vaccine presenting the conserved Neisseria gonorrhoeae SliC antigen that blocks human lysozyme. Infect. Immun. 2023, 91, e0024523. [Google Scholar] [CrossRef]
- Vilela, V.L.R.; Feitosa, T.F. Recent Advances in Toxoplasma gondii Infection and Toxoplasmosis. Trop. Med. Infect. Dis. 2024, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.-W.; Chu, K.-B.; Kang, H.-J.; Kim, M.-J.; Eom, G.-D.; Mao, J.; Lee, S.-H.; Ahmed, A.; Quan, F.-S. Protection Induced by Vaccination with Recombinant Baculovirus and Virus-like Particles Expressing Toxoplasma gondii Rhoptry Protein 18. Vaccines 2022, 10, 1588. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Crooke, S.N.; Zheng, J.; Ganewatta, M.S.; Guldberg, S.M.; Reineke, T.M.; Finn, M. Immunological Properties of Protein–Polymer Nanoparticles. ACS Appl. Bio Mater. 2018, 2, 93–103. [Google Scholar] [CrossRef]
- O’Riordan, C.R.; Lachapelle, A.; Delgado, C.; Parkes, V.; Wadsworth, S.C.; Smith, A.E.; Francis, G.E. PEGylation of Adenovirus with Retention of Infectivity and Protection from Neutralizing Antibody in Vitro and in Vivo. Hum. Gene Ther. 1999, 10, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Croyle, M.A.; Chirmule, N.; Zhang, Y.; Wilson, J.M. PEGylation of E1-Deleted Adenovirus Vectors Allows Significant Gene Expression on Readministration to Liver. Hum. Gene Ther. 2002, 13, 1887–1900. [Google Scholar] [CrossRef]
- Croyle, M.A.; Chirmule, N.; Zhang, Y.; Wilson, J.M. “Stealth” Adenoviruses Blunt Cell-Mediated and Humoral Immune Responses against the Virus and Allow for Significant Gene Expression upon Readministration in the Lung. J. Virol. 2001, 75, 4792–4801. [Google Scholar] [CrossRef]
- Eto, Y.; Yoshioka, Y.; Ishida, T.; Yao, X.; Morishige, T.; Narimatsu, S.; Mizuguchi, H.; Mukai, Y.; Okada, N.; Kiwada, H.; et al. Optimized PEGylated Adenovirus Vector Reduces the Anti-vector Humoral Immune Response against Adenovirus and Induces a Therapeutic Effect against Metastatic Lung Cancer. Biol. Pharm. Bull. 2010, 33, 1540–1544. [Google Scholar] [CrossRef]
- Fisher, K.; Stallwood, Y.; Green, N.; Ulbrich, K.; Mautner, V.; Seymour, L. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 2001, 8, 341–348. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003, 10, 980. [Google Scholar] [CrossRef]
- Protein Data Bank. Worldwide Protein Data Bank (wwPDB): 2024. Available online: https://www.rcsb.org (accessed on 3 October 2024).
- The PyMOL Molecular Graphics System, Version 2.0; Schrödinger, LLC: New York, NY, USA, 2023.
- Ali, A.; Ganguillet, S.; Turgay, Y.; Keys, T.G.; Causa, E.; Fradique, R.; Lutz-Bueno, V.; Chesnov, S.; Tan-Lin, C.-W.; Lentsch, V.; et al. Surface Cross-Linking by Macromolecular Tethers Enhances Virus-like Particles’ Resilience to Mucosal Stress Factors. ACS Nano 2024, 18, 3382–3396. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Bayón, J.L.; Kouznetsova, T.B.; Ouchi, T.; Barkovich, K.J.; Hsu, S.K.; Craig, S.L.; Steinmetz, N.F. Virus-like Particles Armored by an Endoskeleton. Nano Lett. 2024, 24, 2989–2997. [Google Scholar] [CrossRef] [PubMed]
- Schubert, J.; Chanana, M. Coating Matters: Review on Colloidal Stability of Nanoparticles with Biocompatible Coatings in Biological Media, Living Cells and Organisms. Curr. Med. Chem. 2018, 25, 4553–4586. [Google Scholar] [CrossRef]
- Yang, Q.; Lai, S.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Nanomed. Nanobiotechnol. 2015, 7, 655–677. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.W.; Dreaden, E.C. PEG: Will It Come Back to You? Polyethelyne Glycol Immunogenicity, COVID Vaccines, and the Case for New PEG Derivatives and Alternatives. Front. Bioeng. Biotechnol. 2022, 10, 879988. [Google Scholar] [CrossRef]
- Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 2022, 180, 114079. [Google Scholar] [CrossRef]
- Ju, Y.; Carreño, J.M.; Simon, V.; Dawson, K.; Krammer, F.; Kent, S.J. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 2022, 23, 135–136. [Google Scholar] [CrossRef]
- Black, R.A.; Rota, P.A.; Gorodkova, N.; Klenk, H.-D.; Kendal, A.P. Antibody response to the M2 protein of influenza A virus expressed in insect cells. J. Gen. Virol. 1993, 74, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Gomes, K.B.; Menon, I.; Bagwe, P.; Bajaj, L.; Kang, S.-M.; D’souza, M.J. Enhanced Immunogenicity of an Influenza Ectodomain Matrix-2 Protein Virus-like Particle (M2e VLP) Using Polymeric Microparticles for Vaccine Delivery. Viruses 2022, 14, 1920. [Google Scholar] [CrossRef]
- Kim, M.-C.; Song, J.-M.; Eunju, O.; Kwon, Y.-M.; Lee, Y.-J.; Compans, R.W.; Kang, S.-M. Virus-like Particles Containing Multiple M2 Extracellular Domains Confer Improved Cross-protection Against Various Subtypes of Influenza Virus. Mol. Ther. 2013, 21, 485–492. [Google Scholar] [CrossRef]
- D’sa, S.; Gomes, K.B.; Allotey-Babington, G.L.; Boyoglu, C.; Kang, S.-M.; D’souza, M.J. Transdermal Immunization with Microparticulate RSV-F Virus-like Particles Elicits Robust Immunity. Vaccines 2022, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Menon, I.; Kang, S.M.; D’Souza, M. Nanoparticle formulation of the fusion protein virus like particles of respiratory syncytial virus stimulates enhanced in vitro antigen presentation and autophagy. Int. J. Pharm. 2022, 623, 121919. [Google Scholar] [CrossRef] [PubMed]
- Bucarey, S.A.; Pujol, M.; Poblete, J.; Nuñez, I.; Tapia, C.V.; Neira-Carrillo, A.; Martinez, J.; Bassa, O. Chitosan microparticles loaded with yeast-derived PCV2 virus-like particles elicit antigen-specific cellular immune response in mice after oral administration. Virol. J. 2014, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, S.; Hou, L.; Wei, W.; Zhou, M.; Su, Z.; Wu, J.; Chen, W.; Ma, G. Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery. Eur. J. Pharm. Biopharm. 2012, 81, 486–497. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, G.; Shi, X.-M.; Gao, T.-T.; Li, W.; Zhao, Y.; Zhang, F.-Q.; Wu, J.; Cui, X.; Wang, Y.-F. Preparation and Efficacy of a Live Newcastle Disease Virus Vaccine Encapsulated in Chitosan Nanoparticles. PLoS ONE 2012, 7, e53314. [Google Scholar] [CrossRef]
- Zhao, K.; Li, S.; Li, W.; Yu, L.; Duan, X.; Han, J.; Wang, X.; Jin, Z. Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv. 2017, 24, 1574–1586. [Google Scholar] [CrossRef]
- Nkanga, C.I.; Ortega-Rivera, O.A.; Shin, M.D.; Moreno-Gonzalez, M.A.; Steinmetz, N.F. Injectable Slow-Release Hydrogel Formulation of a Plant Virus-Based COVID-19 Vaccine Candidate. Biomacromolecules 2022, 23, 1812–1825. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Heath, M.; Kramer, M.F.; Velazquez, T.C.; Bullimore, A.; Skinner, M.A.; Speiser, D.E.; Bachmann, M.F. In situ delivery of nanoparticles formulated with micron-sized crystals protects from murine melanoma. J. Immunother. Cancer 2022, 10, e004643. [Google Scholar] [CrossRef]
- Tran, B.; Watts, S.; Valentin, J.D.P.; Raßmann, N.; Papastavrou, G.; Ramstedt, M.; Salentinig, S. pH-Responsive Virus-Based Colloidal Crystals for Advanced Material Platforms. Adv. Funct. Mater. 2024, 34, 2402257. [Google Scholar] [CrossRef]
- Hsieh, Y.-C.; Wang, H.-E.; Lin, W.-W.; Roffler, S.R.; Cheng, T.-C.; Su, Y.-C.; Li, J.-J.; Chen, C.-C.; Huang, C.-H.; Chen, B.-M.; et al. Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics 2018, 8, 3164–3175. [Google Scholar] [CrossRef]
- Shimizu, T.; Ichihara, M.; Yoshioka, Y.; Ishida, T.; Nakagawa, S.; Kiwada, H. Intravenous Administration of Polyethylene Glycol-Coated (PEGylated) Proteins and PEGylated Adenovirus Elicits an Anti-PEG Immunoglobulin M Response. Biol. Pharm. Bull. 2012, 35, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-M.; Su, Y.-C.; Chang, C.-J.; Burnouf, P.-A.; Chuang, K.-H.; Chen, C.-H.; Cheng, T.-L.; Chen, Y.-T.; Wu, J.-Y.; Roffler, S.R. Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals. Anal. Chem. 2016, 88, 10661–10666. [Google Scholar] [CrossRef] [PubMed]
- Aves, K.-L.; Janitzek, C.M.; Fougeroux, C.E.; Theander, T.G.; Sander, A.F. Freeze-Drying of a Capsid Virus-like Particle-Based Platform Allows Stable Storage of Vaccines at Ambient Temperature. Pharmaceutics 2022, 14, 1301. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.D.; Jung, E.; Moreno-Gonzalez, M.A.; Ortega-Rivera, O.A.; Steinmetz, N.F. Pluronic F127 “nanoarmor” for stabilization of Cowpea mosaic virus immunotherapy. Bioeng. Transl. Med. 2023, 9, e10574. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Batool, S.; Asif, S.; Ali, M.; Abbasi, B.H. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front. Microbiol. 2022, 12, 790121. [Google Scholar] [CrossRef]
- Gupta, R.; Arora, K.; Roy, S.S.; Joseph, A.; Rastogi, R.; Arora, N.M.; Kundu, P.K. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front. Immunol. 2023, 14, 1123805. [Google Scholar] [CrossRef]
- Berardi, A.; Castells-Graells, R.; Lomonossoff, G.P. High stability of plant-expressed virus-like particles of an insect virus in artificial gastric and intestinal fluids. Eur. J. Pharm. Biopharm. 2020, 155, 103–111. [Google Scholar] [CrossRef]
- Lee, P.W.; Isarov, S.A.; Wallat, J.D.; Molugu, S.K.; Shukla, S.; Sun, J.E.P.; Zhang, J.; Zheng, Y.; Dougherty, M.L.; Konkolewicz, D.; et al. Polymer Structure and Conformation Alter the Antigenicity of Virus-like Particle–Polymer Conjugates. J. Am. Chem. Soc. 2017, 139, 3312–3315. [Google Scholar] [CrossRef]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Yao, X.; Qi, C.; Sun, C.; Huo, F.; Jiang, X. Poly(ethylene glycol) alternatives in biomedical applications. Nano Today 2022, 48, 101738. [Google Scholar] [CrossRef]
- Roth, G.A.; Picece, V.C.T.M.; Ou, B.S.; Luo, W.; Pulendran, B.; Appel, E.A. Designing spatial and temporal control of vaccine responses. Nat. Rev. Mater. 2021, 7, 174–195. [Google Scholar] [CrossRef] [PubMed]
- Button, B.; Cai, L.-H.; Ehre, C.; Kesimer, M.; Hill, D.B.; Sheehan, J.K.; Boucher, R.C.; Rubinstein, M. A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia. Science 2012, 337, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.S.; Steinberg, A.P.; Ismagilov, R.F. Polymers in the gut compress the colonic mucus hydrogel. Proc. Natl. Acad. Sci. USA 2016, 113, 7041–7046. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.B.; Button, B.; Rubinstein, M.; Boucher, R.C. Physiology and pathophysiology of human airway mucus. Physiol. Rev. 2022, 102, 1757–1836. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radiom, M. Potentiating Virus-like Particles for Mucosal Vaccination Using Material Science Approaches. Colloids Interfaces 2024, 8, 68. https://doi.org/10.3390/colloids8060068
Radiom M. Potentiating Virus-like Particles for Mucosal Vaccination Using Material Science Approaches. Colloids and Interfaces. 2024; 8(6):68. https://doi.org/10.3390/colloids8060068
Chicago/Turabian StyleRadiom, Milad. 2024. "Potentiating Virus-like Particles for Mucosal Vaccination Using Material Science Approaches" Colloids and Interfaces 8, no. 6: 68. https://doi.org/10.3390/colloids8060068
APA StyleRadiom, M. (2024). Potentiating Virus-like Particles for Mucosal Vaccination Using Material Science Approaches. Colloids and Interfaces, 8(6), 68. https://doi.org/10.3390/colloids8060068