B-10-Based Macrostructured Cathode for Neutron Detectors
<p>Schematic view of macrostructured cathode.</p> "> Figure 2
<p>Electrostatic field distribution inside detector with macrostructured cathode at <span class="html-italic">H</span> = 2 mm.</p> "> Figure 3
<p>(<b>a</b>) Efficiency of detector at <math display="inline"><semantics> <mi>α</mi> </semantics></math> <math display="inline"><semantics> <msup> <mn>10</mn> <mo>∘</mo> </msup> </semantics></math> and threshold 0 keV. (<b>b</b>) Efficiency of detector at <math display="inline"><semantics> <mi>α</mi> </semantics></math> <math display="inline"><semantics> <msup> <mn>30</mn> <mo>∘</mo> </msup> </semantics></math> and threshold 0 keV. (<b>c</b>) Efficiency of detector at <math display="inline"><semantics> <mi>α</mi> </semantics></math> <math display="inline"><semantics> <msup> <mn>10</mn> <mo>∘</mo> </msup> </semantics></math> and threshold 120 keV. (<b>d</b>) Efficiency of detector at <math display="inline"><semantics> <mi>α</mi> </semantics></math><math display="inline"><semantics> <msup> <mn>30</mn> <mo>∘</mo> </msup> </semantics></math> and threshold 120 keV.</p> "> Figure 4
<p>(<b>a</b>) Efficiency of detector at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 1000 nm and threshold 0 keV. (<b>b</b>) Efficiency of detector at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 1000 nm and threshold 120 keV. (<b>c</b>) Neutron using factor at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 1000 nm and threshold 0 keV. (<b>d</b>) Neutron using factor at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 1000 nm and threshold 120 keV.</p> "> Figure 5
<p>(<b>a</b>) Efficiency of detector at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 1500 nm and threshold 0 keV. (<b>b</b>) Efficiency of detector at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 1500 nm and threshold 120 keV. (<b>c</b>) Neutron using factor at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 1500 nm and threshold 0 keV. (<b>d</b>) Neutron using factor at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 1500 nm and threshold 120 keV.</p> "> Figure 6
<p>(<b>a</b>) Efficiency of detector at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 2000 nm and threshold 0 keV. (<b>b</b>) Efficiency of detector at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 2000 nm and threshold 120 keV. (<b>c</b>) Neutron using factor at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 2000 nm and threshold 0 keV. (<b>d</b>) Neutron using factor at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 2000 nm and threshold 120 keV.</p> "> Figure 7
<p>(<b>a</b>) Efficiency of detector at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 2500 nm and threshold 0 keV. (<b>b</b>) Efficiency of detector at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 2500 nm and threshold 120 keV. (<b>c</b>) Neutron using factor at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 2500 nm and threshold 0 keV. (<b>d</b>) Neutron using factor at <span class="html-italic">d</span>(<math display="inline"><semantics> <msub> <mi mathvariant="normal">B</mi> <mn>4</mn> </msub> </semantics></math>C) = 2500 nm and threshold 120 keV.</p> ">
Abstract
:1. Introduction
2. Modeling of Single-Layer Detector with Macrostructured Cathode
3. Results of Calculations of Efficiency of a Single-Layer Detector with a Macrostructured Cathode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henzlova, D.C.; Baker, M.P.; Bartlett, K.; Favalli, A.; Iliev, M.; Root, M.A.; Sarnoski, S.; Shin, T.; Swinhoe, M.T. Neutron Detectors. In Nondestructive Assay of Nuclear Materials for Safeguards and Security; Geist, W.H., Santi, P.A., Swinhoe, M.T., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Guerard, B.; Hall-Wilton, R.; Murtas, F. Prospects in MPGDs development for neutron detection. arXiv 2014, arXiv:1410.0107. [Google Scholar] [CrossRef]
- Margato, L.M.S.; Morozov, A.; Blanco, A.; Fonte, P.; Lopes, L.; Zeitelhack, K.; Hall-Wilton, R.; Höglund, C.; Robinson, L.; Schmidt, S.; et al. Multilayer 10B-RPC neutron imaging detector. J. Instrum. 2020, 15, P06007. [Google Scholar] [CrossRef]
- Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.C.; Clergeau, J.F.; Deen, P.P.; Ehlers, G.; Van Esch, P.; et al. Multi-Grid detector for neutron spectroscopy: Results obtained on time-of-flight spectrometer CNCS. J. Instrum. 2017, 12, P04030. [Google Scholar] [CrossRef]
- Messi, F.; Mauri, G.; Piscitelli, F. The Milti-Blade: The 10B-based neutron detector for reflectometry at ESS. Nucl. Inst. Methods Phys. Res. A 2019, 936, 499–500. [Google Scholar] [CrossRef]
- Fujiwara, T.; Takahashi, H.; Yamada, N.L.; Uesaka, M. Microstructure Boron detector for high efficiency thermal neutron detection. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seoul, Republic of Korea, 27 October–2 November 2013. [Google Scholar] [CrossRef]
- Stefanescu, I.; Abdullahi, Y.; Birch, J.; Defendi, I.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Zee, M.; Zeitelhack, K. A 10B-based neutron detector with stacked MultiWire Proportional Counters and macrostructured cathodes. J. Instrum. 2013, 8, P12003. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barr, G.J.N.I.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 250. [Google Scholar] [CrossRef]
- Available online: https://elcut.ru/ (accessed on 7 December 2024).
- Stefanescu, I.; Abdullahi, Y.; Birch, J.; Defendi, I.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Seiler, D.; Zeitelhack, K. Development of a novel macrostructured cathode for large-area neutron detectors based on the 10B-containing solid converter. Nucl. Inst. Meth. A 2013, 727, 109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesnikov, A.G.; Kurilkin, A.K.; Bodnarchuk, V.I.; Ovodov, A.S.; Gafurov, M.R. B-10-Based Macrostructured Cathode for Neutron Detectors. Coatings 2025, 15, 168. https://doi.org/10.3390/coatings15020168
Kolesnikov AG, Kurilkin AK, Bodnarchuk VI, Ovodov AS, Gafurov MR. B-10-Based Macrostructured Cathode for Neutron Detectors. Coatings. 2025; 15(2):168. https://doi.org/10.3390/coatings15020168
Chicago/Turabian StyleKolesnikov, Alexander G., Aleksey K. Kurilkin, Viktor I. Bodnarchuk, Alexander S. Ovodov, and Marat R. Gafurov. 2025. "B-10-Based Macrostructured Cathode for Neutron Detectors" Coatings 15, no. 2: 168. https://doi.org/10.3390/coatings15020168
APA StyleKolesnikov, A. G., Kurilkin, A. K., Bodnarchuk, V. I., Ovodov, A. S., & Gafurov, M. R. (2025). B-10-Based Macrostructured Cathode for Neutron Detectors. Coatings, 15(2), 168. https://doi.org/10.3390/coatings15020168