First-Principles Study on the Mechanical Properties of Ni3Sn4-Based Intermetallic Compounds with Ce Doping
<p>Crystal structures of (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>0.5</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>2.5</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> <mfenced open="(" close=")" separators="|"> <mrow> <mn>4</mn> <mi mathvariant="normal">i</mi> </mrow> </mfenced> <mo>,</mo> </mrow> </semantics></math> (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>0.5</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>2.5</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>(2a), (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>1.5</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>1.5</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, and (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 2
<p>Changes in lattice constants a (Å), b (Å), and c (Å) with varying Ce content.</p> "> Figure 3
<p>The variation in bulk modulus, shear modulus, and Young modulus with the Ce atom.</p> "> Figure 4
<p>The variation of <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>A</mi> </mrow> <mrow> <mi>U</mi> </mrow> </msup> </mrow> </semantics></math> with the Ce atom fraction.</p> "> Figure 5
<p>The surface constructions of bulk modulus for (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>0.5</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>2.5</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>1.5</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>1.5</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, and (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>The 3D surface plots of Young’s modulus for (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>0.5</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>2.5</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>1.5</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>1.5</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>, and (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>Comparison of total density of states (TDOS) in <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>e</mi> </mrow> <mrow> <mi>x</mi> </mrow> </msub> <msub> <mrow> <mi>N</mi> <mi>i</mi> </mrow> <mrow> <mn>3</mn> <mo>−</mo> <mi>x</mi> </mrow> </msub> <msub> <mrow> <mi>S</mi> <mi>n</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math> (<span class="html-italic">x</span> = 0, 0.5, 1, 1.5, 2).</p> "> Figure 8
<p>Total and partial density of states (TPDOS).</p> ">
Abstract
:1. Introduction
2. Structural Characteristics and Stability
3. Mechanical Properties
4. Electronic Structure
5. Conclusions
- (1)
- In the doped structure of , the formation enthalpies for Ce occupying the 4i and 2a sites are −24.607 kJ/mol and −23.079 kJ/mol, respectively. This indicates that Ce atoms preferentially occupy the 4i site over the 2a site. Additionally, the formation enthalpy value for the structure with x = 0.5 is the lowest among the (x = 0, 0.5, 1, 1.5, 2) structures, suggesting that Ce doping favors the stability of the (4i) structure relative to the others.
- (2)
- After Ce doping, the elastic modulus of the structure decreased, while its plasticity improved across the board. Additionally, both the Poisson’s ratio (ν) and the ratio of bulk modulus to shear modulus (B/G) increased with higher Ce doping levels. Notably, the structure exhibited minimal changes in hardness (H) and elastic modulus, yet its anisotropy value () was the lowest, indicating that Ce doping effectively enhances the ductility and reduces the anisotropic characteristics of .
- (3)
- The electronic structure analysis of (x = 0, 0.5, 1, 1.5, 2) reveals that the total density of states (TDOS) and partial density of states (PDOS) are primarily influenced by Ni-d and Ce-f orbitals. All studied structures exhibit metallic characteristics and good electrical conductivity, as evidenced by nonzero TDOS at the Fermi level. Increasing Ce content leads to higher TDOS at the Fermi level, indicating reduced structural stability, consistent with formation energy calculations. The introduction of Ce also weakens the hybridization between Ni-d and Sn-p states, while generating a new bonding peak at 0.8~1.4 eV dominated by Ce-f orbitals. This suggests the formation of covalent bonds between Ni and Ce, and an enhanced overlap between Ce-f and Sn-p orbitals with higher Ce content. These electronic changes contribute to stronger metallic bonding and improved ductility, aligning with mechanical property calculations, such as B/G ratios, Poisson’s ratio, and Cauchy pressure. Overall, the analysis confirms that Ce doping enhances the toughness of , providing insights into the role of electronic structure in tailoring the mechanical properties of intermetallic compounds.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Yang, J.; Zhang, Y.; Yu, Z.; Zhang, P. Effect of Substrates on the Formation of Kirkendall Voids in Sn/Cu Joints. Weld. World 2019, 63, 751–757. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Xu, L.; Jing, H.; Zhao, L. Effect of Transient Current Bonding on Interfacial Reaction in Ag-Coated Graphene Sn–Ag–Cu Composite Solder Joints. Trans. Nonferrous Met. Soc. China 2021, 31, 2454–2467. [Google Scholar] [CrossRef]
- Cao, K.; Zhou, J.; Wei, T.; Chen, M.; Hu, S.; Li, K. A Survey of Optimization Techniques for Thermal-Aware 3D Processors. J. Syst. Archit. 2019, 97, 397–415. [Google Scholar] [CrossRef]
- Le, F.; Lee, S.-W.R.; Zhang, Q. 3D Chip Stacking with through Silicon-Vias (TSVs) for Vertical Interconnect and Underfill Dispensing. J. Micromech. Microeng. 2017, 27, 045012. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Wang, J.; Han, Y.; Yu, Z.; Wang, Q.; Zhang, P.; Yang, S. Effects of Solder Thickness on Interface Behavior and Nanoindentation Characteristics in Cu/Sn/Cu Microbumps. Weld. World 2022, 66, 973–983. [Google Scholar] [CrossRef]
- Long, X.; Su, T.; Chen, Z.; Su, Y.; Siow, K.S. Tunable Coefficient of Thermal Expansion of Composite Materials for Thin-Film Coatings. Coatings 2022, 12, 836. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Li, X.; Li, C.; Sun, F.; Liu, M.; Zhu, L.; Li, M. The Effects of Solder Joint Height on the Solid–Liquid Interface Diffusion in Micro Solder Joints. Mater. Lett. 2022, 316, 131969. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Zhang, P.; Yu, Z.; Zhang, Y.; Yu, C.; Lu, H. The Zn Accumulation Behavior, Phase Evolution and Void Formation in Sn-xZn/Cu Systems by Considering Trace Zn: A Combined Experimental and Theoretical Study. J. Mater. Res. Technol. 2019, 8, 4141–4150. [Google Scholar] [CrossRef]
- Zou, H.F.; Zhang, Q.K.; Zhang, Z.F. Interfacial Microstructure and Mechanical Properties of SnBi/Cu Joints by Alloying Cu Substrate. Mater. Sci. Eng. A 2012, 532, 167–177. [Google Scholar] [CrossRef]
- Yang, Y.-S.; Yang, C.-J.; Ouyang, F.-Y. Interfacial Reaction of Ni3Sn4 Intermetallic Compound in Ni/SnAg Solder/Ni System under Thermomigration. J. Alloys Compd. 2016, 674, 331–340. [Google Scholar] [CrossRef]
- Rafailović, L.D.; Karnthaler, H.P.; Trišović, T.; Minić, D.M. Microstructure and Mechanical Properties of Disperse Ni–Co Alloys Electrodeposited on Cu Substrates. Mater. Chem. Phys. 2010, 120, 409–416. [Google Scholar] [CrossRef]
- Tu, K. Reliability Challenges in 3D IC Packaging Technology. Microelectron. Reliab. 2011, 51, 517–523. [Google Scholar] [CrossRef]
- Shen, J.; Chan, Y.; Liu, S. Growth Mechanism of Ni3Sn4 in a Sn/Ni Liquid/Solid Interfacial Reaction. Acta Mater. 2009, 57, 5196–5206. [Google Scholar] [CrossRef]
- Chen, J.-S.; Ye, C.-H.; Yu, C.; Lu, H. The Micro-Mechanism for the Effect of Sn Grain Orientation on Substrate Consumption in Sn Solder Joints. Comput. Mater. Sci. 2015, 108, 1–7. [Google Scholar] [CrossRef]
- Yang, A.; Xiao, K.; Duan, Y.; Li, C.; Yi, J.; Peng, M.; Shen, L. Effect of Indium on Microstructure, Mechanical Properties, Phase Stability and Atomic Diffusion of Sn-0.7Cu Solder: Experiments and First-Principles Calculations. Mater. Sci. Eng. A 2022, 855, 143938. [Google Scholar] [CrossRef]
- Mattes, S.; Brennan, S.; Woodcox, M. First Principles Modeling of Mechanical Properties of Binary Alloys Containing Ga, Sn, and In for Soldering Applications. J. Phys. Condens. Matter 2023, 35, 485401. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yamamoto, T.; Aso, K.; Somidin, F.; Nogita, K.; Matsumura, S. Atom Locations in a Ni Doped η-(Cu,Ni)6Sn5 Intermetallic Compound. Scr. Mater. 2019, 158, 1–5. [Google Scholar] [CrossRef]
- Bi, X.; Hu, X.; Jiang, X.; Li, Q. Effect of Cu Additions on Mechanical Properties of Ni3Sn4-Based Intermetallic Compounds: First-Principles Calculations and Nano-Indentation Measurements. Vacuum 2019, 164, 7–14. [Google Scholar] [CrossRef]
- Bi, X.; Hu, X.; Li, Q. Effect of Co Addition into Ni Film on Shear Strength of Solder/Ni/Cu System: Experimental and Theoretical Investigations. Mater. Sci. Eng. A 2020, 788, 139589. [Google Scholar] [CrossRef]
- Han, Y.; Chen, J.; Lin, M.; Zhang, K.; Lu, H. Synergistic Effects of Alloy Elements on the Structural Stability, Mechanical Properties and Electronic Structure of Ni3Sn4: Using First Principles. Vacuum 2023, 214, 112239. [Google Scholar] [CrossRef]
- Ma, X.; Li, L.; Zhang, Z.; Wang, H.; Wang, E.; Qiu, T. Effects of Rare Earth La on Microstructure and Properties of Ag–21Cu–25Sn Alloy Ribbon Prepared by Melt Spinning. Mater. Des. 2015, 83, 1–5. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, X.; Guo, Y.; He, C. Properties Enhancement of SnAgCu Solders Containing Rare Earth Yb. Mater. Des. 2014, 57, 646–651. [Google Scholar] [CrossRef]
- Zhang, L.; Han, J.; Guo, Y.; He, C. Effect of Rare Earth Ce on the Fatigue Life of SnAgCu Solder Joints in WLCSP Device Using FEM and Experiments. Mater. Sci. Eng. A 2014, 597, 219–224. [Google Scholar] [CrossRef]
- Yu, X.; Lin, G.; Zhang, Z.; Xie, J. Electronic Structure Characteristics of Fe-6.5 wt%Si Alloy Doped with Rare Earth Elements and Its Effect on Mechanical Properties. J. Alloys Compd. 2020, 843, 155916. [Google Scholar] [CrossRef]
- He, Q.; Yu, B.; Li, Z.; Zhao, Y. Density Functional Theory for Battery Materials. Energy Environ. Mater. 2019, 2, 264–279. [Google Scholar] [CrossRef]
- Yu, C.; Chen, J.; Xu, J.; Chen, J.; Lu, H. Effects of Additive Elements on Structural and Electronic Properties of Sn-Based Intermetallics by First Principles. Mater. Res. Express 2014, 1, 025702. [Google Scholar] [CrossRef]
- Flandorfer, H.; Saeed, U.; Luef, C.; Sabbar, A.; Ipser, H. Interfaces in Lead-Free Solder Alloys: Enthalpy of Formation of Binary Ag–Sn, Cu–Sn and Ni–Sn Intermetallic Compounds. Thermochim. Acta 2007, 459, 34–39. [Google Scholar] [CrossRef]
- Jeitschko, W.; Jaberg, B. Structure Refinement of Ni3Sn4. Acta Cryst. B 1982, 38, 598–600. [Google Scholar] [CrossRef]
- Xian, J.W.; Zeng, G.; Belyakov, S.A.; Gu, Q.; Nogita, K.; Gourlay, C.M. Anisotropic Thermal Expansion of Ni3Sn4, Ag3Sn, Cu3Sn, Cu6Sn5 and βSn. Intermetallics 2017, 91, 50–64. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, N.; Wang, S.; Zhang, Y. Effect of Doping 3d Transition Metal (Fe, Co, and Ni) on the Electronic, Magnetic and Optical Properties of Pentagonal ZnO2 Monolayer. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 117, 113806. [Google Scholar] [CrossRef]
- Bouamama, K.H.; Djemia, P.; Faurie, D.; Abadias, G. Structural and Elastic Properties of Single-Crystal and Polycrystalline Ti1−xZrxN Alloys: A Computational Study. J. Alloys Compd. 2012, 536, S138–S142. [Google Scholar] [CrossRef]
- Jin, N.; Yan, Z.; Wang, Y.; Cheng, H.; Zhang, H. Effects of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Lattice Materials. Int. J. Mech. Sci. 2021, 190, 106042. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code—IOPscience. Available online: https://iopscience.iop.org/article/10.1088/0953-8984/14/11/301 (accessed on 28 June 2024).
- Long, X.; Li, J.; Shen, Z.; Su, Y. Dimensionless Analysis to Determine Elastoplastic Properties of Thin Films by Indentation. Coatings 2022, 12, 1768. [Google Scholar] [CrossRef]
- Long, X.; Lu, C.; Shen, Z.; Su, Y. Identification of Mechanical Properties of Thin-Film Elastoplastic Materials by Machine Learning. Acta Mech. Solida Sin. 2023, 36, 13–21. [Google Scholar] [CrossRef]
- Long, X.; Li, Y.; Shen, Z.; Su, Y.; Gu, T.; Siow, K.S. Review of uniqueness challenge in inverse analysis of nanoindentation. J. Manuf. Process. 2024, 131, 1897–1916. [Google Scholar] [CrossRef]
- Perdew, J.P. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Payne, M.C. Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar] [CrossRef]
- Boas, W. Physical Properties of Crystals, Their Representation by Tensors and Matrices: J.F Nye: Clarendon Press, Oxford, 1957. 322pp., 50s. J. Mech. Phys. Solids 1958, 6, 328–329. [Google Scholar] [CrossRef]
- Goumri-Said, S.; Kanoun, M. Theoretical investigations of structural, elastic, electronic and thermal properties of Damiaoite PtIn2. Comput. Mater. Sci. 2008, 43, 243–250. [Google Scholar] [CrossRef]
- Beckstein, O.; Klepeis, J.E.; Hart, G.L.W.; Pankratov, O. First-Principles Elastic Constants and Electronic Structure of α-Pt2Si and c. Phys. Rev. B 2001, 63, 134112. [Google Scholar] [CrossRef]
- Noheda, B.; Gonzalo, J.A.; Cross, L.E.; Guo, R.; Park, S.-E.; Cox, D.E.; Shirane, G. Tetragonal-to-Monoclinic Phase Transition in a Ferroelectric Perovskite: The Structure of PbZr0.52Ti0.48O3. Phys. Rev. B 2000, 61, 8687–8695. [Google Scholar] [CrossRef]
- Cheng, H.-C.; Yu, C.-F.; Chen, W.-H. First-Principles Density Functional Calculation of Mechanical, Thermodynamic and Electronic Properties of CuIn and Cu2In Crystals. J. Alloys Compd. 2013, 546, 286–295. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Korozlu, N.; Colakoglu, K.; Deligoz, E.; Aydin, S. The Elastic and Mechanical Properties of MB12 (M = Zr, Hf, Y, Lu) as a Function of Pressure. J. Alloys Compd. 2013, 546, 157–164. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Gao, F.; Qu, J. Elastic Moduli of (Ni,Cu)3Sn4 Ternary Alloys from First-Principles Calculations. J. Electron. Mater. 2010, 39, 2429–2434. [Google Scholar] [CrossRef]
- Zhang, W.W.; Ma, Y.; Zhou, W.; Wu, P. The Structural, Elastic and Electronic Properties of Ni3−xCuxSn4 (x = 0, 0.5, 1 and 1.5) Intermetallic Compounds via Ab Initio Calculations. J. Electron. Mater. 2019, 48, 4533–4543. [Google Scholar] [CrossRef]
- Chen, Z.; He, M.; Balakrisnan, B.; Chum, C.C. Elasticity Modulus, Hardness and Fracture Toughness of Ni3Sn4 Intermetallic Thin Films. Mater. Sci. Eng. A 2006, 423, 107–110. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Huang, J.; Wang, W.; Ye, Z.; Chen, S.; Zhao, Y. First-Principles Calculations on Physical Properties of Ni3Snx Binary System Intermetallic Compounds and Ni/Ni3Sn Interfaces in Nickel-Tin TLPS Bonding Layer. Intermetallics 2018, 101, 27–38. [Google Scholar] [CrossRef]
- Yang, P.-F.; Lai, Y.-S.; Jian, S.-R.; Chen, J.; Chen, R.-S. Nanoindentation Identifications of Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Derived by Diffusion Couples. Mater. Sci. Eng. A 2008, 485, 305–310. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, Y.; Wen, Z.; Hou, H.; Han, P. Physical Properties and Debye Temperature of Al7Cu2Fe Alloy under Various Pressures Analyzed by First-Principles. Solid State Commun. 2017, 257, 6–10. [Google Scholar] [CrossRef]
- Zeng, G.; Xue, S.; Zhang, L.; Gao, L.; Dai, W.; Luo, J. A Review on the Interfacial Intermetallic Compounds between Sn–Ag–Cu Based Solders and Substrates. J. Mater. Sci. Mater. Electron. 2010, 21, 421–440. [Google Scholar] [CrossRef]
- Carlsson, A.E.; Meschter, P.J. Relative Stability of LI2, DO22, and DO23 Structures in MAl3 Compounds. J. Mater. Res. 1989, 4, 1060–1063. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Ji, M.; Wang, C.Z.; Ho, K.M.; Russell, A.M.; Mudryk, Y.; Becker, A.T.; Larson, J.L. Influence of the Electronic Structure on the Ductile Behavior of B2 CsCl-Type AB Intermetallics. Acta Mater. 2009, 57, 5876–5881. [Google Scholar] [CrossRef]
Phase | Reference | a (Å) | b (Å) | c (Å) | β (◦) | Volume () | Hf (kJ·mol−1) |
---|---|---|---|---|---|---|---|
This work | 12.210 | 4.054 | 5.196 | 105.03 | 248.434 | −24.744 | |
Calculation [26,27] | 12.220 | 4.060 | 5.270 | 104.970 | 253.46 | −24.000 | |
Calculation [20] | 12.299 | 4.084 | 5.288 | 105.190 | - | −26.000 | |
Calculation [18] | 12.418 | 4.111 | 4.315 | 105.480 | - | −26.700 | |
Calculation [19] | 12.334 | 4.100 | 5.325 | 105.010 | - | −26.900 | |
Experiment [28] | 12.210 | 4.060 | 5.22 | 105.50 | 258.83 | - | |
Experiment [29] | 12.199 | 4.061 | 5.22 | 105.25 | 249.58 | - | |
This work | 12.283 | 4.093 | 5.322 | 105.41 | 257.941 | −24.607 | |
(2a) | This work | 12.278 | 4.062 | 5.210 | 105.08 | 250.892 | −23.079 |
This work | 12.493 | 4.114 | 5.231 | 105.32 | 259.300 | −24.472 | |
This work | 12.496 | 4.658 | 5.365 | 105.31 | 301.195 | −24.341 | |
This work | 12.783 | 4.891 | 5.423 | 105.73 | 326.357 | −24.214 |
Phase | Reference | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This work | 181.06 | 68.70 | 60.12 | 146.08 | 75.24 | 162.32 | 62.74 | 60.61 | 47.03 | −24.46 | 11.23 | −11.34 | 14.92 | |
Calculation [20] | 176.60 | 64.30 | 57.40 | 146.00 | 76.10 | 169.70 | 60.80 | 49.50 | 46.70 | −22.90 | 7.00 | −9.6 | 6.90 | |
Calculation [18] | 155.48 | 70.68 | 69.34 | 164.33 | 68.26 | 149.86 | 62.74 | 59.99 | 59.95 | −21.97 | 13.99 | −8.73 | 4.90 | |
This work | 168.12 | 65.37 | 60.08 | 143.16 | 65.21 | 157.03 | 55.11 | 53.51 | 43.32 | −17.6 | 12.42 | −9.71 | 11.21 | |
This work | 152.87 | 63.28 | 59.21 | 122.79 | 64.52 | 140.27 | 52.66 | 52.91 | 43.67 | −16.88 | 11.23 | −11.34 | 9.73 | |
This work | 140.13 | 55.79 | 50.12 | 119.17 | 73.30 | 137.71 | 51.64 | 50.49 | 43.21 | −16.02 | 10.07 | −15.12 | 9.27 | |
This work | 125.31 | 45.61 | 40.27 | 93.22 | 63.57 | 104.28 | 51.13 | 40.53 | 32.01 | −6.11 | 7.01 | −11.09 | 4.38 |
Phase | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0076 | −0.0033 | −0.0010 | 0.0108 | −0.0041 | 0.0086 | 0.0172 | 0.0190 | 0.0232 | 0.0035 | −0.0041 | 0.0019 | −0.0055 | |
0.0081 | −0.0033 | −0.0016 | 0.0103 | −0.0033 | 0.0084 | 0.0192 | 0.0210 | 0.0244 | 0.0031 | −0.0041 | 0.0018 | −0.0050 | |
0.0093 | −0.0040 | −0.0018 | 0.0126 | −0.0045 | 0.0102 | 0.0198 | 0.0216 | 0.0239 | 0.0034 | −0.0049 | 0.0026 | −0.0044 | |
0.0095 | −0.0043 | −0.0008 | 0.0156 | −0.0075 | 0.0121 | 0.0201 | 0.0238 | 0.0241 | 0.0036 | −0.0067 | 0.0049 | −0.0043 | |
0.0100 | −0.0044 | −0.0010 | 0.0220 | −0.0126 | 0.0184 | 0.0198 | 0.0283 | 0.0316 | 0.0020 | −0.0079 | 0.0071 | −0.0027 |
Phase | Reference | H | B/G | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
This work | 99.15 | 53.03 | 98.58 | 46.87 | 99.15 | 49.95 | 128.31 | 0.284 | 7.18 | 1.98 | |
Calculation [48] | - | - | - | - | 100.86 | 49.89 | 128.48 | 0.287 | - | 2.02 | |
Calculation [47] | - | - | - | - | 100.19 | 51.62 | 132.15 | 0.280 | - | 1.94 | |
Calculation [18] | 98.47 | 53.96 | 97.56 | 49.42 | 98.01 | 53.96 | 136.78 | 0.270 | - | 1.82 | |
This work | 94.50 | 48.87 | 93.94 | 44.98 | 94.22 | 46.92 | 120.72 | 0.286 | 6.68 | 2.00 | |
This work | 88.21 | 45.38 | 87.49 | 41.02 | 87.85 | 43.19 | 111.34 | 0.289 | 6.08 | 2.03 | |
This work | 83.89 | 43.56 | 82.75 | 37.22 | 83.32 | 40.39 | 104.32 | 0.291 | 5.61 | 2.06 | |
This work | 69.07 | 36.29 | 68.77 | 29.27 | 68.92 | 32.78 | 84.88 | 0.295 | 4.49 | 2.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Cao, Y.; He, J.; Chen, J.; Liu, S.; Yang, Z.; Lin, J.; Chang, C. First-Principles Study on the Mechanical Properties of Ni3Sn4-Based Intermetallic Compounds with Ce Doping. Coatings 2025, 15, 59. https://doi.org/10.3390/coatings15010059
Zhao R, Cao Y, He J, Chen J, Liu S, Yang Z, Lin J, Chang C. First-Principles Study on the Mechanical Properties of Ni3Sn4-Based Intermetallic Compounds with Ce Doping. Coatings. 2025; 15(1):59. https://doi.org/10.3390/coatings15010059
Chicago/Turabian StyleZhao, Ruisheng, Yan Cao, Jinhu He, Jianjun Chen, Shiyuan Liu, Zhiqiang Yang, Jinbao Lin, and Chao Chang. 2025. "First-Principles Study on the Mechanical Properties of Ni3Sn4-Based Intermetallic Compounds with Ce Doping" Coatings 15, no. 1: 59. https://doi.org/10.3390/coatings15010059
APA StyleZhao, R., Cao, Y., He, J., Chen, J., Liu, S., Yang, Z., Lin, J., & Chang, C. (2025). First-Principles Study on the Mechanical Properties of Ni3Sn4-Based Intermetallic Compounds with Ce Doping. Coatings, 15(1), 59. https://doi.org/10.3390/coatings15010059