Effect of Paste Film Thickness on Workability and Strength of Magnesium Phosphate Cement Mortar
<p>Appearance of MgO.</p> "> Figure 2
<p>Particle size distribution of dead-burnt MgO.</p> "> Figure 3
<p>Particle size distribution of FA.</p> "> Figure 4
<p>Particle size distribution of MK.</p> "> Figure 5
<p>Measurement process of MPC mortar slump.</p> "> Figure 6
<p>Mechanical property test of MPC mortar.</p> "> Figure 7
<p>Comparison of fill density predictions and test results.</p> "> Figure 8
<p>The average paste film thickness of MPC mortar.</p> "> Figure 9
<p>Effect of mix proportion on fluidity of MPC mortar.</p> "> Figure 10
<p>The relationship between slump flow and paste film thickness.</p> "> Figure 11
<p>Effect of river sand gradation on flexural strength of MPC.</p> "> Figure 12
<p>Effect of river sand gradation on the compressive strength of MPC.</p> "> Figure 13
<p>The relationship between film thickness and compressive strength of MPC.</p> ">
Abstract
:1. Introduction
2. Experiment and Raw Material
2.1. Raw Material
2.2. Mixing Proportion and Experiment Method
2.2.1. Mixing Proportion
2.2.2. Experiment Method
2.3. Calculation of Three-Parameter Model and Paste Film Thickness
3. Results and Discussion
3.1. Filling Density Prediction and Test Results
3.2. Influence of Mortar Composition Parameters on the Thickness of MPC Paste Film Layer
3.3. Relationship Between the Thickness of Paste Film and the Slump Flow of MPC Mortar
3.4. Effect of Paste Film Thickness on Mechanical Properties of MPC Mortar
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jianming, Y.; Tao, L.; Xuancheng, X. Effect of fine aggregates on properties of magnesium potassium phosphate cement mortar. J. Mater. Civ. Eng. 2017, 29, 06017012. [Google Scholar] [CrossRef]
- Jiang, Y.; Ahmad, M.R.; Chen, B. Properties of magnesium phosphate cement containing steel slag powder. Constr. Build. Mater. 2019, 195, 140–147. [Google Scholar] [CrossRef]
- Yue, L.; Shi, T.; Li, J. Effects of fly ash and quartz sand on water-resistance and salt-resistance of magnesium phosphate cement. Constr. Build. Mater. 2016, 105, 384–390. [Google Scholar]
- Yang, Q.; Wu, X. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete. Cem. Concr. Res. 1999, 29, 389–396. [Google Scholar] [CrossRef]
- Yang, Q.; Zhu, B.; Zhang, S.; Wu, X. Properties and applications of magnesia–phosphate cement mortar for rapid repair of concrete. Cem. Concr. Res. 2000, 30, 1807–1813. [Google Scholar] [CrossRef]
- Jiang, H.; Liang, B.; Zhang, L. Research on MPB Ultra-early-strength Concrete Repair Materials. J. Build. Mater. 2001, 196–198. [Google Scholar]
- Jiang, H.; Zhang, L. Research on Magnesium Phosphate Cement. J. Wuhan Univ. Technol. 2001, 32–34. [Google Scholar]
- Hall, D.A.; Stevens, R.; El-Jazairi, B. The effect of retarders on the microstructure and mechanical properties of magnesia–phosphate cement mortar. Cem. Concr. Res. 2001, 31, 455–465. [Google Scholar] [CrossRef]
- Hall, D.A.; Stevens, R.; Jazairi, B.E. Effect of water content on the structure and mechanical properties of magnesia-phosphate cement mortar. J. Am. Ceram. Soc. 1998, 81, 1550–1556. [Google Scholar] [CrossRef]
- Xu, B.; Lothenbach, B.; Ma, H. Properties of fly ash blended magnesium potassium phosphate mortars: Effect of the ratio between fly ash and magnesia. Cem. Concr. Compos. 2018, 90, 169–177. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B. Factors that affect the properties of magnesium phosphate cement. Constr. Build. Mater. 2013, 47, 977–983. [Google Scholar] [CrossRef]
- Caliskan, S. Aggregate/mortar interface: Influence of silica fume at the micro-and macro-level. Cem. Concr. Compos. 2003, 25, 557–564. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B. Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesiumphosphate cement (MPC) mortar. Constr. Build. Mater. 2018, 190, 466–478. [Google Scholar] [CrossRef]
- Abadjiev, P.; Panayotov, K.; Petrov, S.I. Influence of condensed silica fume as admixture to concrete on the bond to the reinforcement. Constr. Build. Mater. 1993, 7, 41–44. [Google Scholar] [CrossRef]
- Rukzon, S.; Chindaprasirt, P. Strength, porosity, and chloride resistance of mortar using the combination of two kinds of pozzolanic materials. Int. J. Miner. Metall. Mater. 2013, 20, 808–814. [Google Scholar] [CrossRef]
- Lu, X.; Chen, B. Experimental study of magnesium phosphate cements modified by metakaolin. Constr. Build. Mater. 2016, 123, 719–726. [Google Scholar] [CrossRef]
- Huseien, G.F.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Ariffin, M.A.M. Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar. Ain Shams Eng. J. 2018, 9, 1557–1566. [Google Scholar] [CrossRef]
- Shafiq, N.; Nuruddin, M.F.; Khan, S.U.; Ayub, T. Calcined kaolin as cement replacing material and its use in high strength concrete. Constr. Build. Mater. 2015, 81, 313–323. [Google Scholar] [CrossRef]
- Westman, A.E.R.; Hugill, H.R. The packing of particles. J. Am. Ceram. Soc. 2010, 13, 767–779. [Google Scholar] [CrossRef]
- Furnas, C.C. Grading aggregates-I.-Mathematical relations for beds of broken solids of maximum density. Ind. Eng. Chem. 1931, 23, 1052–1058. [Google Scholar] [CrossRef]
- Stovall, T.; De Larrard, F.; Buil, M. Linear packing density model of grain mixtures. Powder Technol. 1986, 48, 1–12. [Google Scholar] [CrossRef]
- De Larrard, F.; Sedran, T. Optimization of ultra-high-performance concrete by the use of a packing model. Cem. Concr. Res. 1994, 24, 997–1009. [Google Scholar] [CrossRef]
- Yu, A.B.; Standish, N. Characterisation of non-spherical particles from their packing behaviour. Powder Technol. 1993, 74, 205–213. [Google Scholar] [CrossRef]
- Kwan AK, H.; Chan, K.W.; Wong, V. A 3-parameter particle packing model incorporating the wedging effect. Powder Technol. 2013, 237, 172–179. [Google Scholar] [CrossRef]
- Wong, V.; Kwan, A.K.H. A 3-parameter model for packing density prediction of ternary mixes of spherical particles. Powder Technol. 2014, 268, 357–367. [Google Scholar] [CrossRef]
- Tao, J.; Luo, X.; Huang, X.; Xiao, S. Influence of slurry film thickness and water film thickness on flowability of fresh concrete. China Concr. Cem. Prod. 2004, 30–34. [Google Scholar] [CrossRef]
- Huang, J.; Ji, W.; Yan, P. Relationship of workability and rheological properties of UHPC slurry and film thickness of particles. silicate bulletin. Bull. Chin. Ceram. Soc. 2022, 766–776. [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Li, L.G. Combined effects of water film, paste film and mortar film thicknesses on fresh properties of concrete. Constr. Build. Mater. 2014, 50, 598–608. [Google Scholar] [CrossRef]
- Li, L.G.; Kwan, A.K.H. Concrete mix design based on water film thickness and paste film thickness. Cem. Concr. Compos. 2013, 39, 33–42. [Google Scholar] [CrossRef]
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar. Standards Press of China: Beijing, China, 2005.
- GB/T 17671-2021; Test Method for Strength of Cement Mortar (ISO Method). Standards Press of China: Beijing, China, 2021.
- Kwan, A.K.H.; Wong, H.H.C. Packing density of cementitious materials: Part 2-packing and flow of OPC+ PFA+CSF. Mater. Struct. 2008, 41, 773–784. [Google Scholar] [CrossRef]
- Wong, H.H.C.; Kwan, A.K.H. Packing density of cementitious materials: Part 1-measurement using a wet packing method. Mater. Struct. 2008, 41, 689–701. [Google Scholar] [CrossRef]
- Bilginer, B.A.; Erdoğan, S.T. Effect of mixture proportioning on the strength and mineralogy of magnesium phosphate cements. Constr. Build. Mater. 2021, 277, 122264. [Google Scholar] [CrossRef]
- Mao, W.; Cao, C.; Li, X.; Qian, J.; Dang, Y. An Experimental Investigation on the Effects of Limestone Fines in Manufactured Sands on the Performance of Magnesia Ammonium Phosphate Mortar. Buildings 2022, 12, 249. [Google Scholar] [CrossRef]
- Wang, Y.S.; Dai, J.G. Use of magnesia sand for optimal design of high performance magnesium potassium phosphate cement mortar. Constr. Build. Mater. 2017, 153, 385–392. [Google Scholar] [CrossRef]
Component | MgO | SiO2 | CaO | Fe2O3 | Al2O3 | Other |
---|---|---|---|---|---|---|
mass fraction (%) | 92.15 | 2.09 | 1.31 | 1.12 | 0.28 | 3.05 |
NH4H2PO4 | P2O5 | N | PH | Water Content | Water Insoluble |
---|---|---|---|---|---|
≥99% | ≥61% | ≥12% | 4.2–4.8 | ≤0.2% | ≤0.1% |
Item | Relative Molecular Mass | Purity/% | Apparent Density/g/cm3 |
---|---|---|---|
Na5P3O10 | 367.86 | ≥96 | 2.44 |
C2H3NaO2 | 82.03 | ≥99 | 1.12 |
Na2B4O7·5H2O | 291.3 | ≥99.99 | 1.85 |
Item | Mass Fraction/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | CaO | MgO | Fe2O3 | TiO2 | Na2O | K2O | Other | |
FA | 26 | 57.5 | 5.2 | 1.7 | 8.2 | 0.1 | 0.2 | 0.2 | 0.9 |
MK | 43 | 54 | 0.17 | 0.06 | 0.76 | 0.24 | 0.06 | 0.55 | 1.16 |
Screening Particle Size Range (mm) | Characteristic Particle Size (mm) | Bulk Density (g/cm3) | Apparent Density (g/cm3) |
---|---|---|---|
0.3–0.6 | 0.42 | 1.332 | 2.56 |
0.6–1.18 | 0.84 | 1.315 | 2.48 |
No. | Sand Gradation | |
---|---|---|
0.3 mm–0.6 mm | 0.6 mm–1.18 mm | |
1 | 0.0 | 1.0 |
2 | 0.1 | 0.9 |
3 | 0.2 | 0.8 |
4 | 0.3 | 0.7 |
5 | 0.4 | 0.6 |
6 | 0.5 | 0.5 |
7 | 0.6 | 0.4 |
8 | 0.7 | 0.3 |
9 | 0.8 | 0.2 |
10 | 0.9 | 0.1 |
11 | 1.0 | 0.0 |
Test Number | Phosphorus and Magnesium Ratio | Water–Binder Ratio | Sand Grading | Sand–Binder Ratio | |
---|---|---|---|---|---|
1.18 mm~0.6 mm | 0.6 mm~0.3 mm | ||||
M1 | 1/4 | 0.17 | 0.7 | 0.3 | 0.8/1.0 |
M2 | 1/4 | 0.17 | 0.6 | 0.4 | 0.8/1.0 |
M3 | 1/4 | 0.17 | 0.54 | 0.46 | 0.8/1.0 |
M4 | 1/4 | 0.17 | 0.5 | 0.5 | 0.8/1.0 |
M5 | 1/4 | 0.17 | 0.3 | 0.7 | 0.8/1.0 |
Binary Gradation Type | s | aij | bij | cij |
---|---|---|---|---|
0.3 mm–0.6 mm or 0.6 mm–1.18 mm | 0.5 | 0.791 | 0.7164 | 0.322 |
Item. | 0.3–0.6 mm Proportion of River Sand Volume | 0.6–1.18 mm Proportion of River Sand Volume | Packing Density φi* | Packing Density φj* | Final Predicted Value of Filling Density φ* | Filling Density Results |
---|---|---|---|---|---|---|
1 | 0 | 1.0 | 0.776 | 0.749 | 0.749 | 0.749 |
2 | 0.1 | 0.9 | 0.776 | 0.763 | 0.763 | 0.762 |
3 | 0.2 | 0.8 | 0.775 | 0.777 | 0.775 | 0.770 |
4 | 0.3 | 0.7 | 0.772 | 0.789 | 0.772 | 0.773 |
5 | 0.4 | 0.6 | 0.769 | 0.797 | 0.769 | 0.766 |
6 | 0.5 | 0.5 | 0.766 | 0.803 | 0.766 | 0.761 |
7 | 0.6 | 0.4 | 0.761 | 0.804 | 0.761 | 0.759 |
8 | 0.7 | 0.3 | 0.756 | 0.801 | 0.756 | 0.755 |
9 | 0.8 | 0.2 | 0.751 | 0.792 | 0.751 | 0.748 |
10 | 0.9 | 0.1 | 0.745 | 0.777 | 0.745 | 0.743 |
11 | 1.0 | 0 | 0.739 | 0.754 | 0.739 | 0.739 |
Test Number | Sand–Binder Ratio/by Weight | Equivalent Particle Size of River Sand/mm | Equivalent Surface Area of River Sand/mm2 | Equivalent Volume of River Sand/mm3 | Void Content | Number of Equivalent River Sand | Thickness of Paste Film/μm |
---|---|---|---|---|---|---|---|
M1 | 0.8 | 0.541 | 0.919 | 0.0829 | 0.0397 | 7.10 × 106 | 76.62 |
1.0 | 0.541 | 0.919 | 0.0829 | 0.0397 | 8.87 × 106 | 61.3 | |
M2 | 0.8 | 0.528 | 0.875 | 0.0770 | 0.0364 | 7.58 × 106 | 75.32 |
1.0 | 0.528 | 0.875 | 0.0770 | 0.0397 | 9.48 × 106 | 60.3 | |
M3 | 0.8 | 0.520 | 0.850 | 0.0737 | 0.0346 | 7.91 × 106 | 74.38 |
1.0 | 0.520 | 0.850 | 0.0737 | 0.0397 | 9.89 × 106 | 59.5 | |
M4 | 0.8 | 0.515 | 0.832 | 0.0715 | 0.0335 | 8.14 × 106 | 73.74 |
1.0 | 0.515 | 0.832 | 0.0715 | 0.0397 | 1.02 × 107 | 59.0 | |
M5 | 0.8 | 0.489 | 0.751 | 0.0612 | 0.0286 | 9.58 × 106 | 69.52 |
1.0 | 0.489 | 0.751 | 0.0612 | 0.0397 | 1.20 × 107 | 55.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zou, H.; Zhang, J.; Zhang, J.; Zhang, J.; Tang, Y.; Zhang, P. Effect of Paste Film Thickness on Workability and Strength of Magnesium Phosphate Cement Mortar. Coatings 2024, 14, 1609. https://doi.org/10.3390/coatings14121609
Liu H, Zou H, Zhang J, Zhang J, Zhang J, Tang Y, Zhang P. Effect of Paste Film Thickness on Workability and Strength of Magnesium Phosphate Cement Mortar. Coatings. 2024; 14(12):1609. https://doi.org/10.3390/coatings14121609
Chicago/Turabian StyleLiu, He, Haonan Zou, Jingyi Zhang, Ji Zhang, Jian Zhang, Yu Tang, and Peng Zhang. 2024. "Effect of Paste Film Thickness on Workability and Strength of Magnesium Phosphate Cement Mortar" Coatings 14, no. 12: 1609. https://doi.org/10.3390/coatings14121609
APA StyleLiu, H., Zou, H., Zhang, J., Zhang, J., Zhang, J., Tang, Y., & Zhang, P. (2024). Effect of Paste Film Thickness on Workability and Strength of Magnesium Phosphate Cement Mortar. Coatings, 14(12), 1609. https://doi.org/10.3390/coatings14121609