Surface Modification of 42CrMo Steels: A Review from Wear and Corrosion Resistance
<p>(<b>a</b>) Number of publications for each surface modification technique applied to 42CrMo steel; (<b>b</b>) percentage of the number of surface coating materials applied to 42CrMo steel.</p> "> Figure 2
<p>Mechanism of each surface modification technology: (<b>a</b>) thermal spraying; (<b>b</b>) chemical vapor deposition; (<b>c</b>) hardfacing; (<b>d</b>) laser cladding; (<b>e</b>) nitriding; (<b>f</b>) laser surface transformation hardening or laser surface melting.</p> "> Figure 3
<p>(<b>a</b>–<b>c</b>) EDS images; (<b>d</b>) BSE micrograph of the LC HSS alloys; (<b>e</b>,<b>f</b>) EBSD phase map of LC1 and inverse pole figures [<a href="#B33-coatings-14-00337" class="html-bibr">33</a>].</p> "> Figure 4
<p>Worn morphologies of Fe<sub>10</sub>Co<sub>10</sub>Ni<sub>10</sub>Cr<sub>4</sub>Mo<sub>6</sub>B<sub>x</sub>Si<sub>10-x</sub> coatings: (<b>a</b>) B<sub>10</sub>Si<sub>0</sub>; (<b>b</b>) B<sub>7</sub>Si<sub>3</sub>; (<b>c</b>) B<sub>5</sub>Si<sub>5</sub>; (<b>d</b>) B<sub>3</sub>Si<sub>7</sub>; (<b>e</b>) B<sub>0</sub>Si<sub>10</sub>; (<b>f</b>) remelting once; (<b>g</b>) remelting twice [<a href="#B42-coatings-14-00337" class="html-bibr">42</a>].</p> "> Figure 5
<p>(<b>a</b>) Schematic diagram of the preparation process of the ordered microporous wear-resistant self-lubricating integrated material; (<b>b</b>) schematic diagram of the anti-friction and wear-resistance mechanism [<a href="#B126-coatings-14-00337" class="html-bibr">126</a>].</p> "> Figure 6
<p>The 42CrMo steel surface coating wear resistance mechanism: (<b>a</b>) improving the compounds of the coating; (<b>b</b>) lubricating layer; (<b>c</b>) improving the coating defects.</p> "> Figure 7
<p>(<b>a</b>) Zn-Fe coating; (<b>b</b>) Y-modified Zn-Fe coating [<a href="#B132-coatings-14-00337" class="html-bibr">132</a>].</p> "> Figure 8
<p>Schematic diagram of the corrosion resistance mechanism of 42CrMo steel.</p> ">
Abstract
:1. Introduction
2. Surface Modification
2.1. Thermal Spraying
2.2. Deposition
2.3. Hardfacing
2.4. Laser Cladding
2.5. Nitriding
2.6. Laser Surface Treatment
3. Materials
3.1. Iron-Based
3.2. Cobalt-Based
3.3. Nickel-Based
3.4. High-Entropy Alloys
3.5. Reinforcing Composite Coatings
4. Wear Resistance
4.1. Improving Coatings
4.2. Self-Lubricating Coatings
Technology | Materials | Counterpart | Parameters | Temperature | Mode | COF | Wear Loss | Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|
High-velocity oxygen fuel spraying | WC-12%Cr3C2-6%Ni | Si3N4 | 560 r/s; 10 N | 25 °C; 450 °C; 600 °C; 750 °C; 800 °C | Dry sliding | (Unsealed) 25 °C: 0.31 ± 0.03; 450 °C: 0.41 ± 0.02; 600 °C: 0.59 ± 0.01; 750 °C: 0.48 ± 0.03; 800 °C: 0.71 ± 0.02; (Sealed) 25 °C: 0.24 ± 0.01; 450 °C: 0.38 ± 0.03; 600 °C: 0.48 ± 0.02; 750 °C: 0.51 ± 0.02; 800 °C: 0.65 ± 0.01 | N/A | Contact fatigue and oxidative wear | [11] |
Plasma spraying + Induction remelting | NiCrBSi+Ti | N/A | 30 min; 200 rad/min; 300 N | N/A | Sliding | NiCrBSi-TiN: 0.63; Induction remelting: 0.59 | N/A | N/A | [15] |
Deposition | 30 g/L CoSO4·7H2O, 30 g/L NiSO4·6H2O, 80 g/L C6H5Na3O7, 20 g/L Na2SO4, 30 g/L H3BO3 | N/A | 3 mm; 20 min; 10 N | N/A | Simulated gear oil environment | N/A | NaH2PO2 concentration 0, 5, 10, 15, 20 (g/L) Depth and width: 5.08, 542.86; 2.86, 428.57; 2.07, 328.24; 1.35, 257.14; 2.05, 314.19 (μm) | N/A | [17] |
Hardfacing | N, CrN, Nb, Ti | Carbon steel | 45 min; 50 m/min; 600 N | 600 °C | Sliding | N/A | H1: 0.045 g; H2: 0.056 g | Abrasive wear | [118] |
LC | Fe-based | GCr15 | 30 min; 200 rpm; 30 kgf | 20 °C | Sliding | N/A | 9–10 mg | N/A | [27] |
LC | 3540 Fe, CeO2 | Al2O3 | 5 N | N/A | Sliding | Without ultrasonic vibration: 0.52; 45°: 0.26; 90°: 0.4 | N/A | Adhesive wear | [31] |
LC | NiCrBSi | Si3N4 | 20 min; 5 mm; 20 N | N/A | Sliding | N/A | No auxiliary field: 0.0077; 0.0088; 0.0110; Electromagnetic and ultrasonic field assist: 0.0062; 0.0073; 0.0093 (mm3) | Slight adhesive and abrasive wear | [32] |
LC | HSS | Low-carbon steel disc | 2000 m; 0.45 m/s; 5 N | 500 °C | Sliding | X1: 0.55 X2: 0.60 | X1: 4.215; X2: 3.418 (×10−5 mm3·N−1·m−1) | Adhesive and oxidative wear | [34] |
LC | Fe-based | Al2O3 | 180 min; 200 r/min; 100 N | N/A | Sliding | N/A | 0.92 × 10−5 mm3·N−1·m−1 | Micro-cutting and slight oxidative wear | [35] |
LC | HSS | Low-carbon steel discs | 2000 m; 450 mm/s; 5 N | 25 °C, 500 °C | Sliding | N/A | 25 °C: LC1: 1.68 LC2: 0.65 LC3: 0.67 500 °C: LC1: 44.63 LC2: 46.19 LC3: 27.19 (×10−5 mm3·N−1·m−1) | The combined effect of abrasive, adhesion, and frictional oxidative wear | [38] |
LC | Fe55 + nano-TiC + nano-CeO2 | Al2O3 | 60 min; 8 mm; 70 mm/min; 20 N | 25 °C | Sliding | FT2: 0.6897 | FT2: 1.99143; FTC1: 1.685221 (×10−2 mm3) | N/A | [39] |
LC | CuPb10Sn10 | Si3N4 | 1300 rpm; 700 g | 15 °C | Dry sliding | 0.19 | 12.1 mm3 | N/A | [41] |
LC | Fe10Co10Ni10Cr4Mo6BxSi10-x | ZrO2 | 30 min; 5 mm; 10 mm/min; 30 N | Room temperature | Sliding | x = 5: 0.3786 | x = 5: 2.46 × 106 μm3 | N/A | [42] |
LC | Ni45, Gr/Ni | GCr15 | 30 min; 400 r/min; 98 N | Room temperature | Dry sliding | N/A | 200, 300, 400 (mm/min): 1.72; 1.26; 1.7 (mm3); 9.136; 6.824; 9.208 (×10−6 mm3·N−1·m−1) | Slight abrasive and adhesive wear | [43] |
LC | Co-based | Si3N4 | 30 min; 2 Hz; 20 N | N/A | Sliding | C1–C8: 0.58; 0.56; 0.60; 0.55; 0.72; 0.65; 0.56; 0.63 | N/A | N/A | [44] |
LC | WC + Co06 | GCr15 | 3600 s; 5 Hz; 100 N | Room temperature | Dry sliding | N/A | 0.0617 mm3 | N/A | [46] |
LC | HSS | Al2O3 | 180 min; 200 r/min; 100 N | Room temperature | Dry sliding | N/A | S4: 0.0965 g; S1: 0.4857 g | N/A | [50] |
LC | Ni45, Mo | GCr15 | 30 min; 200 rev/min; 294 N | 20 °C | Sliding | N/A | Ni45 + 10%Mo: 8 mg; Ni45: 14 mg | N/A | [52] |
LC | T15 | YG6 | 120 m; 120 min; 1.67; 20 N, 30 N, 50 N, 70 N | N/A | Sliding | N/A | 20N: 0.78; 70N: 0.58 (×10-6 mm3·N−1·m−1) | Abrasive wear, fatigue cracks, and spalling | [53] |
LC | NiCrBSi | GCr15 | 30 min; 200 rev/min; 300 N | N/A | Sliding | N/A | 1500 W: 7.5; 2000 W: 6; 2500 W: 8.5; 3000 W: 10.5; 3500 W: 13.2 (mg) | N/A | [54] |
LC | NiCrBSi | Si3N4 | 50 min; 2 Hz; 100 N | N/A | Sliding | N/A | No.1–No.9: 0.0067; 0.0176; 0.0112; 0.0176; 0.0227; 0.0234; 0.0143; 0.0244; 0.0209 (mm3) | N/A | [55] |
LC | Different Co contents Ni-based alloy | GCr15 | 30 min; 200 r/min; 300 N | 20 °C | Sliding | N/A | 0 wt.% Co: 24; 15 wt.% Co: 13; 30 wt.% Co: 7 (mg) | From abrasive wear to adhesive wear with the increase of Co content | [56] |
LC | Ni60 + nano-WC + CeO2 | GR (4Cr3Mo3W4VNb) steel ball | 20 min; 10 Hz; 500 rpm; 19.8 N | 400 °C | Sliding | N/A | 0%, 0.5%, 1.0%, 1.5%, 2.0% CeO2: 10.7; 8.4; 6.1; 15.5; 17.2 (mg) | Abrasive wear, slight adhesive wear | [58] |
LC | Synthetic diamond, Ti, Ni, Fe24.1Co24.1Cr24.1Ni24.1Mo3.6 (at.%) | Si3N4 | 15 min; 5 mm; 50 Hz; 900 times/min; 50 N | N/A | Sliding | N/A | (50 mm/s) 5500 W, 5000 W, 4000 W, 3000 W: 3.08, 3.38, 3.14, 12.82; (3000 W) 40, 50 mm/s: 3.98, 12.82 (Diamond content) 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%: 12.82, 15.48, 18.19, 16.63 (mm2) | N/A | [59] |
LC | NiCrBSi | GCr15 | 30 min; 500 r/min; 300 N | Room temperature | Dry sliding | N/A | 0.3 mg | N/A | [60] |
LC | T15 | YG6 | 120 min; 120 m; 5 mm; 100 r/min; 50 N | Room temperature | Dry sliding | N/A | CA: 7.3 HAZ: 4.3 Quenching: 5.6 Quenching–tempering: 8.5 (×10−7 mm3·N−1·m−1) | Abrasive and fatigue wear | [63] |
LC | Cr7C3/Ni3Al; Cr3C2/Ni3Al | Gray cast iron | 60 min; 200 r/min; 30 N | Room temperature | Dry sliding | N/A | Cr7C3/Ni3Al: 0.82 ± 0.05; Cr3C2/Ni3Al: 1.42 ± 0.05 (mg) | Cr7C3/Ni3Al: Abrasive wear Cr3C2/Ni3Al: Abrasive and micro-adhesive wear | [64] |
LC | Fe-based | Si3N4 | 30 min; 2 mm; 10 Hz; 50 N | Room temperature | Dry sliding | N/A | 1.2466151 × 107 μm3 | N/A | [65] |
LC | V-rich HSS | Low-carbon steel discs | 2000 m; 0.45 m/s; 5 N | 500 °C | Sliding | 0.55-0.6 | 5V: 19.34; 10V: 21.73; 15V: 30.1 (×10−6 mm3·N−1·m−1) | Abrasive, adhesive, and oxidative wear | [66] |
LC | Ni60, SnAgCu | Si3N4 | 0.2 m/s; 8 N | 25 °C, 100 °C, 200 °C, 300 °C, 400 °C | Sliding | N/A | M: 25 °C: 2.5; 200 °C: 3.4; 300 °C: 2.6; 400 °C: 4.1; MC: 400 °C: 2.6; MCS: 25 °C: 1.9; 300 °C: 1.2; 400 °C: 2.0 (×10−6 mm3·N−1·m−1) | N/A | [126] |
LC; Plasma cladding | Fe25Co25Cr25Ni25 (in at.%) | SiC | 9 m/min; 50 N | Room temperature | Sliding | N/A | LC: 0.7; PC: 8.29 (×10−5 mm3·N−1·m−1) | LC: Abrasive wear PC: Adhesion wear | [47] |
Nitriding | Ti | GCr15 | 15 min; 200 rpm; 400 g | N/A | Sliding | 0.32 | N/A | N/A | [2] |
Nitriding | Al (NO3)3 | GCr15 | 15 min; 214 r/min; 200 g | N/A | Sliding | 0.29 | 1.21 × 10−5 g·m−1·N−1 | N/A | [76] |
Nitriding | CuSO4 + NaOH | GCr15 | 5 mm; 60 min; 10 mm/s; 1200 rpm; 2 N, 10 N | Room temperature | Dry sliding | N/A | 51 μm | N/A | [127] |
Nitriding | PN | GCr15 | 16 min; 250 r/min; 400 g | N/A | Sliding | N/A | 1.02 mg/cm2 | N/A | [128] |
Plasma cladding | WC + Fe25Co25Cr25Ni25 | Si3N4 | 9 m/min; 50 N | Room temperature | Sliding | N/A | Spherical WC: 3.27; Irregular WC: 8.13 (×10−7 mm3·N−1·m−1) | N/A | [108] |
N/A | 10%WC: 303; 60%WC: 3.27; 70%WC: 8.57 (×10−7 mm3·N−1·m−1) | [109] | |||||||
Vacuum fusion | Diamond grits + NiCrBSi | GCr15 | 10 mm; 30 min; 2 Hz; 50 N | Room temperature | Sliding | I: 0.60; II: 0.47 | N/A | N/A | [129] |
Electric arc ion plating | Cr/CrN + TiAlSiN | N/A | 120 min; 0.2 m/s; 1000 g | N/A | Sliding | N/A | 10V: 2.64; 20V: 2.31; 30V: 1.91; 40V: 3.24; 50V: 4.16 (×10−5 mm3·N−1·m−1) | N/A | [130] |
5. Corrosion Resistance
5.1. Corrosion-Resistant Coatings
5.2. Improving Defects and Microstructure
5.3. Passivation Film
Technology | Materials | Corrosive Medium Solution | Electrochemical Parameters of the Substrate | Electrochemical Parameters of Coatings | Ref. | ||
---|---|---|---|---|---|---|---|
- | - | - | Ecorr (mV) | icorr (μA/cm2) | Ecorr (mV) | icorr (μA/cm2) | - |
High-velocity oxygen fuel spraying | WC-17Co | 5 wt.% H2SO4 | N/A | N/A | C–A: −118 | C–A: 1 | [9] |
High-velocity oxygen fuel spraying | WC-17Co | 5 wt.% H2SO4 | N/A | N/A | C–5: −17 | C–5: 0.1 | [9] |
High-velocity oxygen fuel spraying | WC-17Co | 5 wt.% H2SO4 | N/A | N/A | C–7: −138 | C–7: 1.99 | [9] |
High-velocity oxygen fuel spraying | WC-17Co | 5 wt.% H2SO4 | N/A | N/A | C–9: −78 | C–9: 0.40 | [9] |
High-velocity oxygen fuel spraying | WC-17Co | 5 wt.% H2SO4 | N/A | N/A | C–11: −143 | C–11: 3.98 | [9] |
High-velocity oxygen fuel spraying | WC-12%Cr3C2-6%Ni | 3.5 wt.% NaCl | N/A | N/A | T1: −509 | T1: 2.0 | [10] |
High-velocity oxygen fuel spraying | WC-12%Cr3C2-6%Ni | 3.5 wt.% NaCl | N/A | N/A | T2: −468 | T2: 8.9 | [10] |
High-velocity oxygen fuel spraying | WC-12%Cr3C2-6%Ni | 1 mol/L HCl | N/A | N/A | T1: −486 | T1: 1.8 | [10] |
High-velocity oxygen fuel spraying | WC-12%Cr3C2-6%Ni | 1 mol/L HCl | N/A | N/A | T2: −408 | T2: 1.6 | [10] |
High-velocity oxygen fuel spraying | WC-12%Cr3C2-6%Ni | 1 mol/L NaOH | N/A | N/A | T1: −464 | T1: 2.5 | [10] |
High-velocity oxygen fuel spraying | WC-12%Cr3C2-6%Ni | 1 mol/L NaOH | N/A | N/A | T2: −395 | T2: 1.1 | [10] |
Plasma transfer arc welding | Nickel-based + WC | 0.5 mol/L HCl | -448.90 | 365.59 | Ni: −346.18 | Ni: 24.55 | [100] |
Plasma transfer arc welding | Nickel-based + WC | 0.5 mol/L HCl | -448.90 | 365.59 | Ni-30WC: −367.61 | Ni-30WC: 9.097 | [100] |
Plasma transfer arc welding | Ni60 + Ni59 + WC | NaCl | N/A | N/A | 59-1: −462.58 | 59-1: 372.3 | [133] |
Plasma transfer arc welding | Ni60 + Ni59 + WC | NaCl | N/A | N/A | 59-2: −375.86 | 59-2: 318.6 | [133] |
Plasma transfer arc welding | Ni60 + Ni59 + WC | NaCl | N/A | N/A | 60-3: −361.1 | 60-3: 282.5 | [133] |
Plasma transfer arc welding | Ni60 + Ni59 + WC | NaCl | N/A | N/A | 60-5: −317.74 | 60-5: 259.5 | [133] |
LC | Co-based (97wt.%Stellite-6 and 2wt.% CeO2) | 3.5 wt.% NaCl | N/A | N/A | C1: −871 ± 30 | C1: 36.48 ± 0.6 | [36] |
LC | Co-based (97wt.%Stellite-6 and 2wt.% CeO2) | 3.5 wt.% NaCl | N/A | N/A | C2: −861 ± 20 | C2: 29.97 ± 1.1 | [36] |
LC | Co-based (97wt.%Stellite-6 and 2wt.% CeO2) | 3.5 wt.% NaCl | N/A | N/A | C3: −753 ± 50 | C3: 18.93 ± 0.9 | [36] |
LC | Co-based (97wt.%Stellite-6 and 2wt.% CeO2) | 3.5 wt.% NaCl | N/A | N/A | C4: −706 ± 30 | C4: 17.40 ± 0.7 | [36] |
LC | Co-based (97wt.%Stellite-6 and 2wt.% CeO2) | 3.5 wt.% NaCl | N/A | N/A | C5: −730 ± 40 | C5: 21.66 ± 0.5 | [36] |
LC | Ni-based | 3.5 wt.% NaCl | N/A | N/A | M: −300.10 | M: 253.21 | [37] |
LC | Ni-based | 3.5 wt.% NaCl | N/A | N/A | I: −238.98 | I: 0.99 | [37] |
LC | Ni-based | 3.5 wt.% NaCl | N/A | N/A | Z: −376.04 | Z: 420.01 | [37] |
LC | Ni-based | 0.1% NaF | N/A | N/A | M: −232.60 | M: 295.68 | [37] |
LC | Ni-based | 0.1% NaF | N/A | N/A | I: −136.86 | I: 1.61 | [37] |
LC | Ni-based | 0.1% NaF | N/A | N/A | Z: −247.40 | Z: 782.08 | [37] |
LC | Co-based | 3.5 wt.% NaCl | N/A | N/A | C1: −850 | C1: 20.9 | [44] |
LC | Co-based | 3.5 wt.% NaCl | N/A | N/A | C2: −740 | C2: 17.1 | [44] |
LC | Co-based | 3.5 wt.% NaCl | N/A | N/A | C3: −670 | C3: 10.2 | [44] |
LC | Co-based | 3.5 wt.% NaCl | N/A | N/A | C4: −470 | C4: 5.42 | [44] |
LC | Co-based | 3.5 wt.% NaCl | N/A | N/A | C5: −660 | C5: 58.7 | [44] |
LC | Co-based | 3.5 wt.% NaCl | N/A | N/A | C6: −520 | C6: 41.5 | [44] |
LC | Co-based | 3.5 wt.% NaCl | N/A | N/A | C7: −530 | C7: 72.5 | [44] |
LC | Co-based | 3.5 wt.% NaCl | N/A | N/A | C8: −500 | C8: 44.3 | [44] |
LC | Stellite-6 | 3.5 wt.% NaCl | −605 ± 50 | 2.012 ± 0.12 × 103 | C1: −439 ± 30 | C1: 53.85 ± 1.8 | [49] |
LC | Stellite-6 | 3.5 wt.% NaCl | −605 ± 50 | 2.012 ± 0.12 × 103 | C2: −193 ± 20 | C2: 51.52 ± 1.1 | [49] |
LC | Fe-based alloy powder | 3.5 wt.% NaCl | −582 | 10.80 | -494 | 45.18 | [57] |
LC | FeCoNiCrNb0.5 | 3.5 wt.% NaCl | N/A | N/A | N/A | 6.212 | [135] |
LC | FeCoNiCrNb0.5Mo0.25 | 3.5 wt.% NaCl | N/A | N/A | N/A | 4.537 | [135] |
LC | FeCoNiCrNb0.5Mo0.5 | 3.5 wt.% NaCl | N/A | N/A | N/A | 3.130 | [135] |
LC | FeCoNiCrNb0.5Mo0.75 | 3.5 wt.% NaCl | N/A | N/A | N/A | 1.214 | [135] |
LC | FeCoNiCrNb0.5Mo | 3.5 wt.% NaCl | N/A | N/A | N/A | 2.144 | [135] |
Nitriding | Aluminum nitrate | 3.5 wt.% NaCl | N/A | N/A | Plasma aluminum-nitriding: −299.58 | Plasma aluminum-nitriding: 0.22 | [76] |
Nitriding | Aluminum nitrate | 3.5 wt.% NaCl | N/A | N/A | Plasma nitriding: −605.30 | Plasma nitriding: 0.923 | [76] |
Nitriding | N2, H2, Ar | A simulated seawater solution with a P.H of 8.4 | −901 | 2.38 | S2: −406 | S2: 0.5 | [136] |
Nitriding | N2, H2, Ar | A simulated seawater solution with a P.H of 8.4 | −901 | 2.38 | S3: −369 | S3: 0.18 | [136] |
Pack cementation | Zn, NH4Cl, Y2O3, Y-modified Zn-Fe | 3.5 wt.% NaCl | N/A | N/A | Zn-Fe: −1143.23 | Zn-Fe: 7.66 × 10−3 | [132] |
Pack cementation | Zn, NH4Cl, Y2O3, Y-modified Zn-Fe | 3.5 wt.% NaCl | N/A | N/A | Y-modified Zn-Fe: −1189.36 | Y-modified Zn-Fe: 3.59 × 10−3 | [132] |
6. Summary and Outlook
- (1)
- There is a dearth of research focusing on applying HEA coatings to 42CrMo steel surfaces. By employing LC technology and adjusting the HEA material system, remarkable properties can be achieved. In this process, the process parameters of LC technology need to be studied and matched with the selected HEA materials to utilize their respective advantages. This approach has the potential to address the deficiencies inherent in 42CrMo steel.
- (2)
- Compared with alloy cladding, composite cladding has better wear and corrosion resistance but poorer plastic toughness. Attempts are made to improve the performance of the composite cladding by adjusting the substances and proportions contained in the composite cladding. Meanwhile, researchers are encouraged to continue to innovate surface modification methods and materials to meet the evolving challenges in wear and corrosion resistance.
- (3)
- Current research is mainly aimed at improving the room-temperature wear resistance of 42CrMo steel. However, for the practical application of 42CrMo steel, the improvement of high-temperature wear resistance holds greater significance. This requires consideration of the compatibility of the high-temperature-resistant material with 42CrMo steel and the ability of the technology to provide enough energy to make the material a reliable coating. Subsequent research endeavors should therefore prioritize investigations in this area.
- (4)
- Although some of the aforementioned materials and technologies have been applied in practical production settings, the majority remain in the experimental stage. Consequently, there is a subsequent necessity to employ diverse, complex engineering environments suitable for practical application. This involves subjecting these materials and technologies to simulations of real-world conditions, including wear-resistant and corrosion-resistant tests. Such rigorous testing is crucial for advancing the development of these materials and technologies.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Zhai, Y.; Zhou, L.; Zhang, Z. Study on laser surface hardening behavior of 42CrMo press brake die. Coatings 2021, 11, 997. [Google Scholar] [CrossRef]
- Wu, J.; Mao, C.; Wei, K.; Hu, J. Titanium-modified plasma nitriding layer and enhanced properties for 42CrMo steel. J. Mater. Res. Technol. 2022, 18, 3819–3825. [Google Scholar] [CrossRef]
- Cheng, Y.; Cui, R.; Wang, H.; Han, Z. Effect of processing parameters of laser on microstructure and properties of cladding 42CrMo steel. Int. J. Adv. Manuf. Technol. 2018, 96, 1715–1724. [Google Scholar] [CrossRef]
- He, P.; Ding, Y.; Jiang, S.; Zhang, H.; Shen, T.; Wang, Y. Process parameters analysis of laser phase transformation hardening on the raceway surface of shield main bearing. Photonics 2023, 10, 287. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, Y.; Yu, T.; Wang, D.; Leng, X.; Wang, K.; Liu, L.; Pan, J.; Yao, S.; Chen, Z. Review on wear resistance of laser cladding high-entropy alloy coatings. J. Mater. Res. Technol. 2024, 28, 911–934. [Google Scholar] [CrossRef]
- Kumar, R.K.; Kamaraj, M.; Seetharamu, S. A pragmatic approach and quantitative assessment of silt erosion characteristics of HVOF and HVAF processed WC-CoCr coatings and 16Cr5Ni steel for hydro turbine applications. Mater. Des. 2017, 132, 79–95. [Google Scholar]
- Xu, Y.; Wang, Y.; Xu, Y.; Li, M.; Hu, Z. Microscopic characteristics and properties of Fe-based amorphous alloy compound reinforced WC-Co-based coating via plasma spray welding. Processes 2021, 9, 6. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D.; Xie, Y. Experimental study on water droplet erosion resistance of coatings (Ni60 and WC-17Co) sprayed by APS and HVOF. Wear 2019, 432–433, 202950. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, P.; Zhang, F.; Dong, C.; Zhang, J.; Cai, H. Influence of heat treatment on corrosion resistance of high-velocity oxygen-fuel sprayed WC-17Co coatings on 42CrMo steel. J. Mater. Eng. Perform. 2015, 24, 3218–3227. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Tian, S.; Xiao, Y.; Jia, Y. Microstructures and corrosion behavior of HVOF-sprayed WC-12%Cr3C2-6%Ni coatings before and after sealing. Int. J. Appl. Ceram. Technol. 2022, 19, 383–396. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Tian, S.; Jia, Y.; Xiao, Y. Microstructures and high-temperature friction and wear behavior of high-velocity oxygen-fuel-sprayed WC-12%Co-6%Cr coatings before and after sealing. J. Mater. Eng. Perform. 2022, 31, 448–460. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, X.; Kong, L.; Dong, G.; Remani, A.; Leach, R. Defect inspection technologies for additive manufacturing. Int. J. Extrem. Manuf. 2021, 3, 22002. [Google Scholar] [CrossRef]
- Houdková, Š.; Smazalová, E.; Vostřák, M.; Schubert, J. Properties of NiCrBSi coating, as sprayed and remelted by different technologies. Surf. Coat. Technol. 2014, 253, 14–26. [Google Scholar] [CrossRef]
- Serres, N.; Hlawka, F.; Costil, S.; Langlade, C.; Machi, F. Microstructures and mechanical properties of metallic NiCrBSi and composite NiCrBSi–WC layers manufactured via hybrid plasma/laser process. Appl. Surf. Sci. 2011, 257, 5132–5137. [Google Scholar] [CrossRef]
- Chen, J.; Dong, Y.; Wan, L.; Yang, Y.; Chu, Z.; Zhang, J.; He, J.; Li, D. Effect of induction remelting on the microstructure and properties of in situ TiN-reinforced NiCrBSi composite coatings. Surf. Coat. Technol. 2018, 340, 159–166. [Google Scholar] [CrossRef]
- Imanian Ghazanlou, S.; Farhood, A.H.S.; Hosouli, S.; Ahmadiyeh, S.; Rasooli, A. Pulse and direct electrodeposition of Ni–Co/micro and nanosized SiO2 particles. Mater. Manuf. Process. 2018, 33, 1067–1079. [Google Scholar] [CrossRef]
- Huicheng Zhang, W.Y.L.Y. Electrodeposited CoNiP coating on 42CrMo steel as gear material and its wear resistance performance in simulated oil. Int. J. Electrochem. Sci. 2022, 17, 220633. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Q.; Li, S. Microstructure and corrosion behavior of TiC/Ti(CN)/TiN multilayer CVD coatings on high strength steels. Appl. Surf. Sci. 2013, 280, 626–631. [Google Scholar] [CrossRef]
- Gualco, A.; Svoboda, H.G.; Surian, E.S.; Vedia, L.A.D. Effect of welding procedure on wear behaviour of a modified martensitic tool steel hardfacing deposit. Mater. Des. 2010, 31, 4165–4173. [Google Scholar] [CrossRef]
- Yu, Y.X.; He, B.L.; Shi, J.P. Double metal trimming die manufactured by using hardfacing method. Adv. Mater. Res. 2010, 97–101, 3940–3943. [Google Scholar] [CrossRef]
- Morsy, M.A.; El-Kashif, E. Repair welding reclamation of 42CrMo4 and C45 steels. In Proceedings of the IIW 2017 International Conference, Shanghai, China, 25–30 June 2017; pp. 29–30. [Google Scholar]
- Chen, C.; Zuo, Y.; Liu, B.; Xue, H.; Ma, B.; Li, X. Microstructure and wear resistance of nano titanium dioxide strengthening hardfacing material. Vacuum 2019, 162, 175–182. [Google Scholar] [CrossRef]
- Wirth, F.; Arpagaus, S.; Wegener, K. Analysis of melt pool dynamics in laser cladding and direct metal deposition by automated high-speed camera image evaluation. Addit. Manuf. 2018, 21, 369–382. [Google Scholar] [CrossRef]
- Shu, F.; Zhang, B.; Liu, T.; Sui, S.; Liu, Y.; He, P.; Liu, B.; Xu, B. Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings. Surf. Coat. Technol. 2019, 358, 667–675. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; Zhang, Y.; Lian, G.; Cao, Q.; Yang, J. Influence of laser power on the microstructure and properties of in-situ NbC/WCoB–TiC coating by laser cladding. Mater. Chem. Phys. 2022, 290, 126636. [Google Scholar] [CrossRef]
- Han, T.; Zhou, K.; Chen, Z.; Gao, Y. Research progress on laser cladding alloying and composite processing of steel materials. Metals 2022, 12, 2055. [Google Scholar] [CrossRef]
- Ju, J.; Zhou, Y.; Kang, M.; Wang, J. Optimization of process parameters, microstructure, and properties of laser cladding Fe-based alloy on 42CrMo steel roller. Materials 2018, 11, 2061. [Google Scholar] [CrossRef]
- Qi, K.; Yang, Y.; Sun, R.; Hu, G.; Lu, X.; Li, J. Effect of magnetic field on tribological properties of Co-based alloy layer produced by laser cladding on 42CrMo. Mater. Lett. 2021, 282, 128893. [Google Scholar] [CrossRef]
- Qi, K.; Yang, Y.; Liang, W.; Jin, K.; Xiong, L. Influence of the anomalous elastic modulus on the crack sensitivity and wear properties of laser cladding under the effects of a magnetic field and Cr addition. Surf. Coat. Technol. 2021, 423, 127575. [Google Scholar] [CrossRef]
- Qi, K.; Yang, Y.; Sun, R.; Hu, G.; Lu, X.; Li, J.; Liang, W.; Jin, K.; Xiong, L. Effect of magnetic field on crack control of Co-based alloy laser cladding. Opt. Laser Technol. 2021, 141, 107129. [Google Scholar] [CrossRef]
- Fulin Jiang, C.L.Y.W. Effect of applied angle on the microstructure evolution and mechanical properties of laser clad 3540 Fe/CeO2 coating assisted by in-situ ultrasonic vibration. Mater. Res. Express 2019, 6, 0865h6. [Google Scholar] [CrossRef]
- Hu, G.; Yang, Y.; Sun, R.; Qi, K.; Lu, X.; Li, J. Microstructure and properties of laser cladding NiCrBSi coating assisted by electromagnetic-ultrasonic compound field. Surf. Coat. Technol. 2020, 404, 126469. [Google Scholar] [CrossRef]
- Ur Rahman, N.; Capuano, L.; van der Meer, A.; de Rooij, M.B.; Matthews, D.T.A.; Walmag, G.; Sinnaeve, M.; Garcia-Junceda, A.; Castillo, M.; Römer, G.R.B.E. Development and characterization of multilayer laser cladded high speed steels. Addit. Manuf. 2018, 24, 76–85. [Google Scholar] [CrossRef]
- Ur Rahman, N.; Capuano, L.; Cabeza, S.; Feinaeugle, M.; Garcia-Junceda, A.; de Rooij, M.B.; Matthews, D.T.A.; Walmag, G.; Gibson, I.; Römer, G.R.B.E. Directed energy deposition and characterization of high-carbon high speed steels. Addit. Manuf. 2019, 30, 100838. [Google Scholar] [CrossRef]
- Feng, Y.; Pang, X.; Feng, K.; Feng, Y.; Li, Z. Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C, B). J. Mater. Res. Technol. 2021, 15, 5597–5607. [Google Scholar] [CrossRef]
- Cui, C.; Wu, M.; Miao, X.; Gong, Y.; Zhao, Z. The effect of laser energy density on the geometric characteristics, microstructure and corrosion resistance of Co-based coatings by laser cladding. J. Mater. Res. Technol. 2021, 15, 2405–2418. [Google Scholar] [CrossRef]
- Ray, A.; Arora, K.S.; Lester, S.; Shome, M. Laser cladding of continuous caster lateral rolls: Microstructure, wear and corrosion characterisation and on-field performance evaluation. J. Mater. Process. Technol. 2014, 214, 1566–1575. [Google Scholar] [CrossRef]
- Ur Rahman, N.; de Rooij, M.B.; Matthews, D.T.A.; Walmag, G.; Sinnaeve, M.; Römer, G.R.B.E. Wear characterization of multilayer laser cladded high speed steels. Tribol. Int. 2019, 130, 52–62. [Google Scholar] [CrossRef]
- Qi, X.; Li, Y.; Li, F.; Du, J.; Li, C.; Wang, K.; Lu, H.; Yang, B. Improving the properties of remanufactured wear parts of shield tunneling machines by novel Fe-based composite coatings. Ceram. Int. 2022, 48, 6722–6733. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, G.; Wang, X.; Luo, S.; Wang, L.; Rong, Y. Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel. Int. J. Heat Mass Transf. 2020, 148, 118990. [Google Scholar] [CrossRef]
- Wan, L.; Cheng, M.; Fu, G.; Wei, C.; Shi, T.; Shi, S. Annular laser cladding of CuPb10Sn10 copper alloy for high-quality anti-friction coating on 42CrMo steel surface. Opt. Laser Technol. 2023, 158, 108878. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, T.; Yin, Q.; Wang, W.; Song, X.; Huang, W.; Zhang, H. Effect of B-Si ratio and laser remelting on the microstructure and properties of Fe10Co10Ni10Cr4Mo6BxSi10−x coating by laser cladding. Surf. Coat. Technol. 2022, 450, 128989. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y. Microstructure and wear behavior of laser-cladded Ni-based coatings decorated by graphite particles. Surf. Coat. Technol. 2021, 412, 127044. [Google Scholar] [CrossRef]
- Qi, K.; Yang, Y. Microstructure, wear, and corrosion resistance of Nb-modified magnetic field-assisted Co-based laser cladding layers. Surf. Coat. Technol. 2022, 434, 128195. [Google Scholar] [CrossRef]
- Qi, K.; Yang, Y.; Hu, G.; Lu, X.; Li, J. Thermal expansion control of composite coatings on 42CrMo by laser cladding. Surf. Coat. Technol. 2020, 397, 125983. [Google Scholar] [CrossRef]
- Lv, G.; Yang, X.; Gao, Y.; Wang, S.; Xiao, J.; Zhang, Y.; Chen, K.; Yang, H. Investigation on fretting wear performance of laser cladding WC/Co06 coating on 42CrMo steel for hydraulic damper. Int. J. Refract. Met. Hard Mater. 2023, 111, 106068. [Google Scholar] [CrossRef]
- Peng, Y.B.; Zhang, W.; Li, T.C.; Zhang, M.Y.; Wang, L.; Song, Y.; Hu, S.H.; Hu, Y. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding. Int. J. Refract. Met. Hard Mater. 2019, 84, 105044. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Z.; Huang, X.; Wu, Y.; Gong, Y. Process parameter optimization and EBSD analysis of Ni60A-25% WC laser cladding. Int. J. Refract. Met. Hard Mater. 2021, 101, 105675. [Google Scholar] [CrossRef]
- Cui, C.; Wu, M.; He, R.; Gong, Y.; Miao, X. Investigation on the columnar-to-equiaxed transition and corrosion behavior in multi-track Stellite-6 coating fabricated by laser cladding. Mater. Chem. Phys. 2022, 291, 126681. [Google Scholar] [CrossRef]
- Feng, Y.; Yao, C.; Shen, C.; Feng, Y.; Feng, K.; Li, Z. Influence of in-situ synthesized carboborides on microstructure evolution and the wear resistance of laser clad Fe-base composite coatings. Mater. Charact. 2020, 164, 110326. [Google Scholar] [CrossRef]
- Zhang, N.; Xu, Y.; Wang, M.; Hou, X.; Du, B.; Ge, X.; Shi, H.; Xie, X. M2 coating prepared by ultra-high speed laser cladding: Microstructure and interfacial residual stress. Mater. Today Commun. 2023, 35, 105638. [Google Scholar] [CrossRef]
- Kaiming, W.; Yulong, L.; Hanguang, F.; Yongping, L.; Zhenqing, S.; Pengfei, M. A study of laser cladding NiCrBSi/Mo composite coatings. Surf. Eng. 2018, 34, 267–275. [Google Scholar] [CrossRef]
- Yingtao, Z.; Yongliang, M.; Gang, W.; Xiulin, J.; Zhichao, L. Experimental study on the wear properties of 42CrMo steel with different microstructures and T15 laser cladding. J. Mater. Eng. Perform. 2022, 31, 4232–4241. [Google Scholar] [CrossRef]
- Kai-ming, W.; Han-guang, F.; Yu-long, L.; Yong-ping, L.; Shi-zhong, W.; Zhen-qing, S. Effect of power on microstructure and properties of laser cladding NiCrBSi composite coating. Trans. IMF 2017, 95, 328–336. [Google Scholar] [CrossRef]
- Hu, G.; Yang, Y.; Qi, K.; Lu, X.; Li, J. Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters. Trans. Indian Inst. Met. 2020, 73, 2623–2634. [Google Scholar] [CrossRef]
- Wang, K.; Chang, B.; Lei, Y.; Fu, H.; Lin, Y. Effect of cobalt on microstructure and wear resistance of Ni-based alloy coating fabricated by laser cladding. Metals 2017, 7, 551. [Google Scholar] [CrossRef]
- Xu, H.; Lu, H.; Zhang, H.; Xiao, G.; Zhao, W. Laser cladding in-situ nano-submicron TiC reinforced ultrafine-grained Fe-based composite layers on 42CrMo steel. Int. J. Electrochem. Sci. 2019, 14, 9974–9981. [Google Scholar] [CrossRef]
- Shu, D.; Cui, X.; Li, Z.; Sun, J.; Wang, J.; Chen, X.; Dai, S.; Si, W. Effect of the rare earth oxide CeO2 on the microstructure and properties of the nano-WC-reinforced Ni-based composite coating. Metals 2020, 10, 383. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Peng, Y.; Zhang, M.; Liu, S.; Liu, Y. Microstructures and wear resistance of FeCoCrNi-Mo high entropy alloy/diamond composite coatings by high speed laser cladding. Coatings 2020, 10, 300. [Google Scholar] [CrossRef]
- Wang, D.; Chu, J.; Qu, G.; Zhou, X. Preparation and characterization of laser clad NiCrBSi coating reinforced with WC. J. Phys. Conf. Ser. 2021, 1965, 12110. [Google Scholar] [CrossRef]
- Yinghua, L.; Kaiming, W. Microstructure and properties of a laser cladded NiCrBSi alloy coating. Numer. Simul. 2021, 62, 698–702. [Google Scholar] [CrossRef]
- Xu, L.; Xiao, R.; Qu, G.; Wang, D. In situ synthesized graded TiC particulate reinforced Ni-based composite coating prepared by laser cladding. J. Phys. Conf. Ser. 2021, 1820, 12050. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Duan, M.; Wang, G.; Li, Z. The improvement of the wear resistance of T15 laser clad coating by the uniformity of microstructure. Lubricants 2022, 10, 271. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, F.; Chen, C.; Zhao, L.; Fu, L.; Feng, Y.; Cao, Y.; Peng, Y.; Tian, Z.; Li, C. Microstructure and wear resistance of a Cr7C3 reinforced Ni3Al composite coating prepared by laser cladding. Coatings 2022, 12, 105. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, P.; Liang, X.; Tantai, F.; Yang, F. Research of microstructure and performance of laser cladding Fe-based medium manganese alloy. In Proceedings of the 2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Xi’an, China, 12–13 December 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 944–949. [Google Scholar]
- Rahman, N.U.; Capuano, L.; Rooij, M.B.D.; Matthews, D.T.A.; Garcia-Junceda, A.; Mekicha, M.A.; Cordova, L.; Walmag, G.; Sinnaeve, M.; Römer, G.R.B.E. Laser metal deposition of vanadium-rich high speed steel: Microstructural and high temperature wear characterization. Surf. Coat. Technol. 2019, 364, 115–126. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Luo, J.; Zhang, S.; Qiu, J.; He, Y. Microstructure, mechanical and adhesive properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrided AISI 4140 steel. Mater. Charact. 2019, 147, 353–364. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Li, J.; Yang, X.; Hu, J. Comparative study of plasma oxynitriding and plasma nitriding for AISI 4140 steel. J. Alloys Compd. 2016, 680, 642–645. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Shen, L.; Zhang, D.; Wang, C. Plasma nitriding of 42CrMo low alloy steels at anodic or cathodic potentials. Surf. Coat. Technol. 2010, 204, 2337–2342. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, X.; Li, W.; Qin, M.; Gu, J. Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steel. Appl. Surf. Sci. 2018, 431, 39–43. [Google Scholar] [CrossRef]
- Mao, C.; Wei, K.; Liu, X.; Yu, X.; Hu, J. A novel titanium enhanced plasma nitriding for 42CrMo steel. Mater. Lett. 2020, 262, 127052. [Google Scholar] [CrossRef]
- Tang, L.; Mao, C.; Jia, W.; Wei, K.; Hu, J. The effect of novel composite pretreatment on performances of plasma nitrided layer. J. Mater. Res. Technol. 2020, 9, 9531–9536. [Google Scholar] [CrossRef]
- Tang, L.; Jia, W.; Hu, J. An enhanced rapid plasma nitriding by laser shock peening. Mater. Lett. 2018, 231, 91–93. [Google Scholar] [CrossRef]
- Kovacı, H.; Hacısalihoğlu, İ.; Yetim, A.F.; Çelik, A. Effects of shot peening pre-treatment and plasma nitriding parameters on the structural, mechanical and tribological properties of AISI 4140 low-alloy steel. Surf. Coat. Technol. 2019, 358, 256–265. [Google Scholar] [CrossRef]
- Kang, Q.; Fan, H.; Yang, X.; An, X.; Hu, J. Evolution of aluminum hydroxide film during plasma nitriding and its enhancement effect. Mater. Lett. 2023, 330, 133348. [Google Scholar] [CrossRef]
- Kang, Q.; Wei, K.; Fan, H.; Liu, X.; Hu, J. Ultra-high efficient novel plasma aluminum-nitriding methodology and performances analysis. Scr. Mater. 2022, 220, 114902. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Sun, F.; Hu, J. Characterization and effect of pre-oxidation on D.C. plasma nitriding for AISI4140 steel. Vacuum 2014, 109, 170–174. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Wang, S.; Wei, K.; Hu, J. A rapid D.C. plasma nitriding technology catalyzed by pre-oxidation for AISI4140 steel. Mater. Lett. 2014, 116, 199–202. [Google Scholar] [CrossRef]
- Mirjani, M.; Mazrooei, J.; Karimzadeh, N.; Ashrafizadeh, F. Investigation of the effects of time and temperature of oxidation on corrosion behavior of plasma nitrided AISI 4140 steel. Surf. Coat. Technol. 2012, 206, 4389–4393. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Sohi, M.H.; Raouf, A.H.; Mahboubi, F. Effect of plasma nitriding temperature on the corrosion behavior of AISI 4140 steel before and after oxidation. Surf. Coat. Technol. 2010, 205, S261–S266. [Google Scholar] [CrossRef]
- Heydarzadeh Sohi, M.; Ebrahimi, M.; Honarbakhsh Raouf, A.; Mahboubi, F. Comparative study of the corrosion behaviour of plasma nitrocarburised AISI4140 steel before and after post-oxidation. Mater. Des. 2010, 31, 4432–4437. [Google Scholar] [CrossRef]
- Sun, P.; Li, S.; Yu, G.; He, X.; Zheng, C.; Ning, W. Laser surface hardening of 42CrMo cast steel for obtaining a wide and uniform hardened layer by shaped beams. Int. J. Adv. Manuf. Technol. 2014, 70, 787–796. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Han, B. Microstructure, hardness and stress in melted zone of 42CrMo steel by wide-band laser surface melting. Opt. Lasers Eng. 2011, 49, 530–535. [Google Scholar] [CrossRef]
- Chaowen, L.; Yong, W.; Bin, H.; Tao, H.; Huanxiao, Z. Numerical simulation of multi-track laser surface melting of 42CrMo steel. In Proceedings of the 2010 International Conference on Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; pp. 65–69. [Google Scholar]
- Weng, F.; Chen, C.; Yu, H. Research status of laser cladding on titanium and its alloys: A review. Mater. Des. 2014, 58, 412–425. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Gao, W.; Zhou, C.; Liu, F.; Lin, X. Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content. J. Mater. Process. Technol. 2014, 214, 899–905. [Google Scholar] [CrossRef]
- Lu, J.Z.; Cao, J.; Lu, H.F.; Zhang, L.Y.; Luo, K.Y. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding. Surf. Coat. Technol. 2019, 369, 228–237. [Google Scholar] [CrossRef]
- Lizzul, L.; Sorgato, M.; Bertolini, R.; Ghiotti, A.; Bruschi, S.; Fabbro, F.; Rech, S. On the influence of laser cladding parameters and number of deposited layers on as-built and machined AISI H13 tool steel multilayered claddings. CIRP J. Manuf. Sci. Technol. 2021, 35, 361–370. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Q.; Guo, Y.; Ding, K.; Liao, T.; Wang, F. Nano-TiC reinforced [Cr–Fe4Co4Ni4]Cr3 high-entropy-alloy composite coating fabricated by laser cladding. J. Mater. Res. Technol. 2022, 21, 2076–2088. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, B.; Wang, H.; Wang, C. Microstructure and nanoindentation measurement of residual stress in Fe-based coating by laser cladding. J. Mater. Sci. 2012, 47, 2122–2126. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, Q.; Wang, H.; Shu, F.; Zhao, H.; He, W.; Yu, Z. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding. J. Alloys Compd. 2019, 785, 846–854. [Google Scholar] [CrossRef]
- Chen, J.; Guo, M.; Yang, M.; Su, H.; Liu, L.; Zhang, J. Phase-field simulation of γʹ coarsening behavior in cobalt-based superalloy. Comput. Mater. Sci. 2021, 191, 110358. [Google Scholar] [CrossRef]
- Han, J.; Yoo, B.; Im, H.J.; Oh, C.; Choi, P. Microstructural evolution of the heat affected zone of a Co–Ti–W alloy upon laser cladding with a CoNiCrAlY coating. Mater. Charact. 2019, 158, 109998. [Google Scholar] [CrossRef]
- Qin, R.; Zhang, X.; Guo, S.; Sun, B.; Tang, S.; Li, W. Laser cladding of high Co–Ni secondary hardening steel on 18Cr2Ni4WA steel. Surf. Coat. Technol. 2016, 285, 242–248. [Google Scholar] [CrossRef]
- Cui, G.; Han, B.; Zhao, J.; Li, M. Comparative study on tribological properties of the sulfurizing layers on Fe, Ni and Co based laser cladding coatings. Tribol. Int. 2019, 134, 36–49. [Google Scholar] [CrossRef]
- Yu, H.; Ukai, S.; Hayashi, S.; Oono, N.H. Effect of Cr and Y2O3 on the oxidation behavior of Co-based oxide dispersion strengthened superalloys at 900 °C. Corros. Sci. 2017, 127, 147–156. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Y. Effects of Co and W on the microstructure and wear behavior of NiCrAlMoTiFeNbX equimolar multicomponent-clad layers. Wear 2020, 446–447, 203186. [Google Scholar] [CrossRef]
- Yue, H.; Lv, N.; Guo, C.; Zhai, J.; Dai, W.; Zhang, J.; Zhao, G. Multi-objective process optimization of laser cladding Co-based alloy by process window and grey relational analysis. Coatings 2023, 13, 1090. [Google Scholar] [CrossRef]
- Lyu, Y.; Sun, Y.; Yang, Y. Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel. Met. Mater. Int. 2016, 22, 311–318. [Google Scholar] [CrossRef]
- Liu, S.; Chen, H.; Zhao, X.; Fan, L.; Guo, X.; Yin, Y. Corrosion behavior of Ni-based coating containing spherical tungsten carbides in hydrochloric acid solution. J. Iron Steel Res. Int. 2019, 26, 191–199. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W.; Shen, H.; Cai, J.; Guan, Q.; Lyu, P.; Li, Y. Microstructures and high-temperature oxidation behavior of laser cladded NiCoCrAlYSi coating on Inconel 625 Ni-based superalloy modified via high current pulsed Electron beam. Surf. Coat. Technol. 2021, 427, 127796. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Wang, J. In-situ reactive fabrication and effect of phosphorus on microstructure evolution of Ni/Ni–Al intermetallic composite coating by laser cladding. Mater. Des. 2016, 105, 171–178. [Google Scholar] [CrossRef]
- Chang, F.; Cai, B.; Zhang, C.; Huang, B.; Li, S.; Dai, P. Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding. Surf. Coat. Technol. 2019, 359, 132–140. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, L.; Cui, Y.; Geng, K.; Manladan, S.M.; Luo, Z.; Han, J. Strengthening mechanisms in multi-phase FeCoCrNiAl1.0 high-entropy alloy cladding layer. Mater. Charact. 2020, 159, 110037. [Google Scholar] [CrossRef]
- Lu, K.; Zhu, J.; Guo, D.; Yang, M.; Sun, H.; Wang, Z.; Hui, X.; Wu, Y. Microstructures, corrosion resistance and wear resistance of high-entropy alloys coatings with various compositions prepared by laser cladding: A review. Coatings 2022, 12, 1023. [Google Scholar]
- Kuang, S.; Zhou, F.; Liu, W.; Liu, Q. Al2O3/MC particles reinforced MoFeCrTiWNbx high-entropy-alloy coatings prepared by laser cladding. Surf. Eng. 2022, 38, 158–165. [Google Scholar] [CrossRef]
- Yuan, S.; Li, H.; Han, C.; Li, W.; Xu, X.; Chen, C.; Wei, R.; Wang, T.; Wu, S.; Li, F. FeCoNiCrAl0.6 high-entropy alloy coating on Q235 steel fabricated by laser cladding. Mater. Sci. Technol. 2023, 39, 705–713. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, W.; Li, T.; Zhang, M.; Wang, L.; Hu, S. Microstructures and wear-resistance of WC-reinforced high entropy alloy composite coatings by plasma cladding: Effect of WC morphology. Surf. Eng. 2021, 37, 678–687. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, W.; Li, T.; Zhang, M.; Liu, B.; Liu, Y.; Wang, L.; Hu, S. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding. Surf. Coat. Technol. 2020, 385, 125326. [Google Scholar] [CrossRef]
- Tan, D.Q.; Yang, X.Q.; He, Q.; Mo, J.L.; Zhuang, W.H.; He, J.F. Impact-sliding wear properties of PVD CrN and WC/C coatings. Surf. Eng. 2021, 37, 12–23. [Google Scholar] [CrossRef]
- Tillmann, W.; Hagen, L.; Kokalj, D. Embedment of eutectic tungsten carbides in arc sprayed steel coatings. Surf. Coat. Technol. 2017, 331, 153–162. [Google Scholar] [CrossRef]
- Zhang, T.G.; Zhuang, H.F.; Zhang, Q.; Yao, B.; Yang, F. Influence of Y2O3 on the microstructure and tribological properties of Ti-based wear-resistant laser-clad layers on TC4 alloy. Ceram. Int. 2020, 46, 13711–13723. [Google Scholar] [CrossRef]
- Sun, S.; Fu, H.; Ping, X.; Guo, X.; Lin, J.; Lei, Y.; Wu, W.; Zhou, J. Effect of CeO2 addition on microstructure and mechanical properties of in-situ (Ti, Nb)C/Ni coating. Surf. Coat. Technol. 2019, 359, 300–313. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Yang, X.; Zhang, T.; Sun, R. Optimization of microstructure and properties of composite coatings by laser cladding on titanium alloy. Ceram. Int. 2021, 47, 2230–2243. [Google Scholar] [CrossRef]
- Cui, C.; Wu, M.; He, R.; Gong, Y.; Miao, X. Effect of CeO2 addition on grain refinement and mechanical properties of stellite-6 coating fabricated by laser cladding. J. Therm. Spray Technol. 2022, 31, 2621–2634. [Google Scholar] [CrossRef]
- Yan, L.; Guan, L.; Wang, D.; Xiang, D. Application and prospect of wear simulation based on ABAQUS: A review. Lubricants 2024, 12, 57. [Google Scholar] [CrossRef]
- Wang, K.; Liu, W.; Li, X.; Tong, Y.; Hu, Y.; Hu, H.; Chang, B.; Ju, J. Effect of hot isostatic pressing on microstructure and properties of high chromium K648 superalloy manufacturing by extreme high-speed laser metal deposition. J. Mater. Res. Technol. 2024, 28, 3951–3959. [Google Scholar] [CrossRef]
- Yang, K.; Bao, Y. Improving high-temperature wear resistance of Fe–Cr13–C hardfacing alloy by nitrogen alloying. Steel Res. Int. 2013, 84, 457–462. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, D.; Zheng, T.; Chen, Y. Effects of rare earths on microstructure and wear resistance in metal additive manufacturing: A review. Coatings 2024, 14, 139. [Google Scholar] [CrossRef]
- Yin, C.; Liang, Y.; Liang, Y.; Li, W.; Yang, M. Formation of a self-lubricating layer by oxidation and solid-state amorphization of nano-lamellar microstructures during dry sliding wear tests. Acta Mater. 2019, 166, 208–220. [Google Scholar] [CrossRef]
- Sivalingam, V.; Zan, Z.; Sun, J.; Selvam, B.; Gupta, M.K.; Jamil, M.; Mia, M. Wear behaviour of whisker-reinforced ceramic tools in the turning of Inconel 718 assisted by an atomized spray of solid lubricants. Tribol. Int. 2020, 148, 106235. [Google Scholar] [CrossRef]
- Akhtar, S.S. A critical review on self-lubricating ceramic-composite cutting tools. Ceram. Int. 2021, 47, 20745–20767. [Google Scholar] [CrossRef]
- Zhu, S.; Cheng, J.; Qiao, Z.; Yang, J. High temperature solid-lubricating materials: A review. Tribol. Int. 2019, 133, 206–223. [Google Scholar] [CrossRef]
- Dou, P.; Jia, Y.; Zheng, P.; Wu, T.; Yu, M.; Reddyhoff, T.; Peng, Z. Review of ultrasonic-based technology for oil film thickness measurement in lubrication. Tribol. Int. 2022, 165, 107290. [Google Scholar] [CrossRef]
- Huang, Q.; Shi, X.; Xue, Y.; Zhang, K.; Gao, Y.; Wu, C. Synergetic effects of biomimetic microtexture with multi-solid lubricants to improve tribological properties of AISI 4140 steel. Tribol. Int. 2022, 167, 107395. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Z.; Lu, Z.; Qin, L. Tribological behavior of the wear-resistant and self-lubrication integrated interface structure with ordered micro-pits. Surf. Coat. Technol. 2023, 454, 129159. [Google Scholar] [CrossRef]
- Sun, J.; Wang, D.; Yang, J.; Li, F.; Zuo, L.; Ge, F.; Chen, Y. In situ preparation of nano-Cu/microalloyed gradient coating with improved antifriction properties. Coatings 2022, 12, 1336. [Google Scholar] [CrossRef]
- Ma, H.; Wei, K.; Zhao, X.; Liu, X.; Hu, J. Performance enhancement by novel plasma boron-nitriding for 42CrMo4 steel. Mater. Lett. 2021, 304, 130709. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, K.; Chang, J.; Qu, S.; Jia, W.; Li, Z.; Yu, S.; Gao, J.; Ma, Y. Microstructure, mechanical properties and reciprocating wear properties of diamond grits-reinforced NiCrBSi composite coatings on 42CrMo. Surf. Coat. Technol. 2022, 445, 128703. [Google Scholar] [CrossRef]
- Suge, M.; Baolin, Z.; Zhefeng, Z.; Xiangwen, C.; Cuiyong, T. Effect of excitation coil voltage on TiAlSiN coating on 42CrMo steel surface. Mater. Res. Express 2020, 7, 56519. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, D.; Wang, K.; Yu, T. Corrosion of laser cladding high-entropy alloy coatings: A review. Coatings 2022, 12, 1669. [Google Scholar] [CrossRef]
- Liu, L.; Yu, S.; Cao, W. Zn–Fe and Y-modified Zn–Fe coatings on 42CrMo steel via pack cementation. Rare Met. 2021, 40, 2266–2274. [Google Scholar] [CrossRef]
- Fan, L.; Chen, H.Y.; Du, H.L.; Hou, Y.; Cheng, Q. Corrosion resistance of nickel-based composite coatings reinforced by spherical tungsten carbide. Mater. Sci. Forum 2020, 993, 1075–1085. [Google Scholar] [CrossRef]
- Wan, T.; Huang, Z.; Cheng, Z.; Zhu, M.; Zhu, W.; Li, Z.; Fu, D.; Fuzeng, R. The effect of chromium content on the corrosion behavior of ultrafine-grained CrxMnFeCoNi high-entropy alloys in sulfuric acid solution. Microstructures 2023, 3, 2023014. [Google Scholar]
- Zhou, Z.; Jiang, F.; Yang, F.; Yang, Y.; Liang, P. Novel laser cladding FeCoNiCrNb0.5Mox high-entropy alloy coatings with excellent corrosion resistance. Mater. Lett. 2023, 335, 133714. [Google Scholar] [CrossRef]
- Valdés, J.; Huape, E.; Oseguera, J.; Ruíz, A.; Ibarra, J.; Bernal, J.L.; Medina, A. Effects of plasma nitriding in the corrosion behavior of an AISI 4140 steel using a seawater medium solution. Mater. Lett. 2022, 316, 131991. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Mo | S | P | Fe |
---|---|---|---|---|---|---|---|
0.38–0.45 | 0.17–0.37 | 0.50–0.80 | 0.90–1.20 | 0.15–0.25 | ≤0.035 | ≤0.035 | Bal. |
Technology | Advantages | Disadvantages |
---|---|---|
Thermal spraying | Wide range of applications, controlled coating thickness | Poor bonding strength, porosity, and workpiece deformation |
Deposition | Suitable for depositing on dense, uniform materials; strong bonding force | Expensive equipment, thin coating thickness |
Hardfacing | Tough and wear-resistant surface, reducing replacement costs | High hardness leads to brittleness |
Laser cladding | High energy density, controllable dilution rate, fast processing speed, small heat-affected zone, small deformation, high solidification rate | High initial investment for laser systems |
Nitriding | Higher wear and corrosion resistance | Primarily applicable to iron-based alloys, high temperature of the process |
Laser surface treatment | Allows for localized treatment, minimizes heat-affected zones | Initial investment in laser equipment can be high |
Laser Power (W) | Scanning Speed (mm/s) | Powder Feed Rate (g/min) | Spot Diameter (mm) | Shielding Gas (L/min) | Track Overlap (%) | Ref. |
---|---|---|---|---|---|---|
3000, 5000, 8000 | 2, 5, 8, 10 | 10 | 3 × 24 | N/A | 50 | [3] |
1000–3000 | 2–6 | 10–20 | 5 × 5 | 15 | N/A | [27] |
1100 | 3 | N/A | 3 | N/A | N/A | [28] |
1300 | 3 | N/A | 3 | 0.22 | N/A | [29] |
1300 | 3 | N/A | 3 | 0.2 | N/A | [30] |
1100 | 4 | N/A | 4 | N/A | 50 | [31] |
1500–1900 | 2–4 | N/A | 3–5 | N/A | N/A | [32] |
2200–2400 | 5 | 14 | 5 | N/A | 50 | [33] |
3600 | 5 | 16 | 7 | |||
2200–2400 | 5 | 15 | 5 | N/A | N/A | [34] |
1800 | 4 | N/A | 7.4 | 15 | N/A | [35] |
1400–1800 | 6–7.3 | 1.2 r/min | 3 | N/A | N/A | [36] |
4000 | 13.3 | 48.5 | 6 | 10 | N/A | [37] |
2000–2200 | 5 | N/A | N/A | N/A | N/A | [38] |
1800 | 14 | N/A | 4 | 12 | 40 | [39] |
600 | 6–10 | 3.6–5.4 | 1.6 | N/A | N/A | [40] |
800–1200 | 5 | 2.1 | N/A | N/A | N/A | [41] |
1800/1200 (remelt) | 6.7/13.3 (remelt) | 40 | 3 | 10 | 50 | [42] |
2100 | 200–400 | 7.9 | 3 | N/A | 50 | [43] |
1300 | 3 | N/A | 3 | 0.2 | N/A | [44] |
800 | 3 | N/A | 3 | 10 | N/A | [45] |
1200 | 6.7 | 8 L/min | 1 | 10 | N/A | [46] |
1000 | 6 | N/A | 4.5 | 20 | N/A | [47] |
1800–2800 | 2–4 | 5–15 | 3–5 | N/A | N/A | [48] |
1600 | 4 | 18 | 3 | 16 | 40 | [49] |
1800 | 4 | N/A | 7.2 | 10 | N/A | [50] |
1800 | 36 | N/A | N/A | 6 | Axial offset 0.32 mm/r | [51] |
2000 | 4 | 15 | 5 × 5 | 15 | N/A | [52] |
2000 | 7 | 14.41 | 16 | 20 | 30 | [53] |
1500–3500 | 4 | 15 | N/A | N/A | 40 | [54] |
1500–1900 | 2–4 | N/A | 3–5 | N/A | N/A | [55] |
2000 | 4 | 15 | N/A | 15 | N/A | [56] |
4000 | 25 | N/A | N/A | 10 | 30 | [57] |
1800 | 2 | N/A | 5 | 10 | 45 | [58] |
3000–5500 | 30–60 | N/A | 4.6 | 20 | N/A | [59] |
2880 | 7 | 14 | 6 | 8 | N/A | [60] |
1500–2500 | 2–6 | 10–20 | 5×5 | N/A | N/A | [61] |
1000 | 5 | N/A | 2 | 5 | N/A | [62] |
2000–2300 | 6–9 | N/A | N/A | N/A | 30–40 | [63] |
2000 | 3 | 17.5 | 5×2 | 15 | N/A | [64] |
1800 | 5 | 8 | 3 | N/A | N/A | [65] |
1900–3200 | 5, 10, 15 | 11–18 | N/A | N/A | 45 | [66] |
Materials | C | Si | Co | Cr | Ni | B | Mo | W | V | Nb | Mn | P | S | Fe | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe-based | 0.10–0.015 | 1.0–1.5 | N/A | 15–17 | 3.5–4.0 | 0.5–1.1 | 1.5–1.9 | N/A | N/A | 1.1–1.7 | 0.3–0.7 | N/A | N/A | Bal. | [3] |
Fe-based | 0.2 | 0.75 | 0.5 | 16.0 | 2.5 | 1.0 | 0.5 | N/A | N/A | N/A | N/A | N/A | N/A | Bal. | [27] |
3540Fe | 0.4–0.7 | 4.5 | N/A | 18–20 | 24–30 | 1.5–2.5 | 4–5 | N/A | N/A | N/A | N/A | N/A | N/A | Bal. | [31] |
Fe-Cr-Mo-W-V | 1.40 | 0.40 | N/A | 4.30 | N/A | N/A | 4.0–6.0 | 5.0–6.0 | 3.0–5.0 | N/A | N/A | N/A | N/A | Bal. | [33] |
Febal-x-Cr-Mo-W-V-Cox | 1.40 | 0.40 | 3.0–5.0 | 4.30 | N/A | N/A | 4.0–6.0 | 5.0–6.0 | 3.0–5.0 | N/A | N/A | N/A | N/A | Bal. | |
High-carbon HSS | ≥2.0 | ≤0.50 | N/A | 4.0–6.0 | N/A | N/A | 5.0–7.0 | N/A | 4.0–6.0 | N/A | N/A | N/A | N/A | Bal. | [34] |
≥2.0 | ≤0.50 | N/A | 4.0–6.0 | N/A | N/A | 5.0–7.0 | 5.0–7.0 | 4.0–6.0 | N/A | N/A | N/A | N/A | Bal. | ||
Fe-based | 0.7–1 | 1–1.5 | N/A | 3–4 | N/A | 0.5–1 | N/A | 4–6 | 1–2 | 0.5–1 | 1–1.5 | N/A | N/A | Bal. | [35] |
HSS | 1.3 | N/A | N/A | 4.3 | N/A | N/A | 4.6 | 5.6 | 4.0–5.0 | N/A | N/A | N/A | N/A | Bal. | [38] |
1.3 | N/A | 3.0–5.0 | 4.3 | N/A | N/A | 4.6 | 5.6 | 3.0–5.0 | N/A | N/A | N/A | N/A | Bal. | ||
1.3 | N/A | N/A | 4.2 | N/A | N/A | 5.0–6.0 | 6.0–7.0 | 3.0–4.0 | N/A | N/A | N/A | N/A | Bal. | ||
Fe55 | 0.7–1.0 | 3.0–0.4 | N/A | 16–18 | 10–13 | 3.5–4.0 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Bal. | [39] |
T15 | 1.60 | N/A | 5.00 | 4.0 | N/A | N/A | N/A | 12.0 | 4.9 | N/A | 0.3 | N/A | 0.04 | Bal. | [40] |
HSS | 0.5–1 | N/A | N/A | 3–4 | N/A | N/A | N/A | 6–8 | 0.5–1 | 0.5–1 | N/A | N/A | N/A | Bal. | [50] |
M2 alloy | 0.95–1.05 | 0.2–0.45 | N/A | 3.75–4.50 | N/A | N/A | 4.50–5.50 | 5.50–6.75 | 1.75–2.20 | N/A | 0.15–0.40 | P + S ≤ 0.06 | Bal. | [51] | |
T15 | 1.60 | 0.48 | 5.4 | 4.5 | N/A | N/A | N/A | 11.7 | 4.7 | N/A | 0.45 | N/A | N/A | Bal. | [53,63] |
Fe-based | 0.9–1.0 | N/A | N/A | 1–1.2 | N/A | 0.1–0.3 | 1.5–2.0 | N/A | N/A | N/A | 8.5–9.0 | N/A | N/A | Bal. | [65] |
V-rich HSS | 1.8–2.2 | 1.0 | N/A | 5.2 | N/A | N/A | 1.2 | 0.3 | 9.0–12.0 | N/A | N/A | N/A | N/A | Bal. | [66] |
Materials | C | Si | Mn | Cr | B | Mo | W | Nb | Fe | Ni | Co | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Co-based | 1 | N/A | N/A | 5 | 13 | N/A | N/A | N/A | 20 | N/A | Bal. | [28] |
Co-based | 1 | N/A | N/A | 0, 5, 10 | 13 | N/A | N/A | N/A | 10 | N/A | Bal. | [29] |
Co-based | 1.0 | N/A | N/A | 5.0 | 12.0 | N/A | N/A | N/A | 20.0 | N/A | Bal. | [30] |
Stellite-6 | 1.15 | 1.10 | 1.00 | 29.00 | N/A | 1.00 | 4.50 | N/A | 3.00 | 3.00 | Bal. | [36] |
Co-based | 1 | N/A | N/A | 5 | 10 | N/A | N/A | 0, 5, 15, 25 | 20 | N/A | Bal. | [44] |
Co-based | 2.50 | 1.20 | 1.00 | 29.50 | N/A | 1.00 | 12.50 | N/A | 3.00 | 3.00 | Bal. | [98] |
Materials | C | Si | Mn | Cr | Mo | B | Al | W | Cu | Nb | Fe | Ti | Co | Ni | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NiCrBSi | 0.5–1.0 | 2.0–3.0 | N/A | 9.0–12.0 | N/A | 1.0–2.5 | 2.0–5.0 | N/A | N/A | N/A | ≤10 | N/A | N/A | Bal. | [32] |
58Ni 12Cr 10Mo 0.5B 9W 4Cu 4Fe | N/A | N/A | N/A | 12 | 10 | 0.5 | N/A | 9 | 4 | N/A | 4 | N/A | N/A | 58 | [37] |
62Ni 23Cr 10Mo 4Nb | N/A | N/A | N/A | 23 | 10 | N/A | N/A | N/A | N/A | 4 | N/A | N/A | N/A | 62 | |
76Ni 12Cr 5Mo 4Si 1B 1Fe | N/A | 4 | N/A | 12 | 5 | 1 | N/A | N/A | N/A | N/A | 1 | N/A | N/A | 76 | |
Ni45 | 0.45 | 3.0 | 0.2 | 13.0 | N/A | 2.5 | N/A | N/A | N/A | N/A | 10.0 | N/A | N/A | Bal. | [43] |
NiCrBSi | 0.72 | 4.1 | 0.01 | 15.1 | 0.02 | 3.3 | N/A | N/A | N/A | N/A | 3.77 | N/A | N/A | Bal. | [45] |
Ni60A | 0.7 | 4 | N/A | 15 | N/A | 3.2 | N/A | N/A | N/A | N/A | 5.0 | N/A | N/A | Bal. | [48] |
Ni45 | 0.60 | 3.53 | N/A | 7.52 | Bal. | 2.21 | N/A | N/A | N/A | N/A | 3.62 | N/A | N/A | Bal. | [52] |
NiCrBSi | 0.5–1.0 | 3.5–5.0 | N/A | 14–19 | N/A | 3.0–4.5 | N/A | N/A | N/A | N/A | <8 | N/A | N/A | Bal. | [54,61] |
Ni-based | 0.30 | 3.05 | N/A | 7.01 | N/A | 1.59 | N/A | N/A | N/A | N/A | 3.24 | N/A | 0, 15, 30 | Bal. | [56] |
Ni60 | 0.5–1.0 | 3.5–5.0 | N/A | 14–18 | N/A | 3.0–4.5 | N/A | N/A | N/A | N/A | 7.0–10.0 | N/A | N/A | Bal. | [58] |
NiCrBSi | 0.68 | 3.4 | N/A | 14 | N/A | 3.4 | N/A | N/A | N/A | N/A | ≤4.2 | N/A | N/A | Bal. | [60] |
Ni3Al | N/A | N/A | 0.78 | N/A | N/A | 0.02 | 9.52 | N/A | N/A | N/A | 11.61 | 0.56 | N/A | Bal. | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, D.; Liu, G.; Qian, Y.; Xu, Y.; Xiang, D. Surface Modification of 42CrMo Steels: A Review from Wear and Corrosion Resistance. Coatings 2024, 14, 337. https://doi.org/10.3390/coatings14030337
Zhang Z, Wang D, Liu G, Qian Y, Xu Y, Xiang D. Surface Modification of 42CrMo Steels: A Review from Wear and Corrosion Resistance. Coatings. 2024; 14(3):337. https://doi.org/10.3390/coatings14030337
Chicago/Turabian StyleZhang, Zhendong, Di Wang, Guanglei Liu, Yiyi Qian, Yuquan Xu, and Dingding Xiang. 2024. "Surface Modification of 42CrMo Steels: A Review from Wear and Corrosion Resistance" Coatings 14, no. 3: 337. https://doi.org/10.3390/coatings14030337
APA StyleZhang, Z., Wang, D., Liu, G., Qian, Y., Xu, Y., & Xiang, D. (2024). Surface Modification of 42CrMo Steels: A Review from Wear and Corrosion Resistance. Coatings, 14(3), 337. https://doi.org/10.3390/coatings14030337