Corrosion Behavior of Ti and Ti6Al4V Alloy in Brackish Water, Seawater, and Seawater Bittern
<p>Open circuit potential measurements in brackish water, seawater, and seawater bittern for Ti (<b>a</b>) and Ti6Al4V alloy (<b>b</b>).</p> "> Figure 2
<p>Linear parts of <span class="html-italic">i</span>-<span class="html-italic">E</span> curves for Ti (<b>a</b>) and Ti6Al4V alloy (<b>b</b>) in brackish water, seawater, and seawater bittern.</p> "> Figure 3
<p>Potentiodynamic potential measurements in brackish water, seawater, and seawater bittern for Ti (<b>a</b>) and Ti6Al4V alloy (<b>b</b>).</p> "> Figure 4
<p>Nyquist (<b>a</b>,<b>b</b>) and Bode (<b>c</b>,<b>d</b>) plots recorded on cp-Ti and Ti-6Al-4V alloy in different solutions.</p> "> Figure 5
<p>The EC model used to fit the EIS data.</p> "> Figure 6
<p>Optical microscope images of surface of Ti after potentiodynamic polarization measurements in (<b>a</b>) brackish water, (<b>b</b>) seawater, and (<b>c</b>) seawater bittern; and surfaces of Ti6Al4V after measurements in (<b>d</b>) brackish water, (<b>e</b>) seawater, and (<b>f</b>) seawater bittern.</p> "> Figure 7
<p>SEM images of surface of Ti after potentiodynamic polarization measurements in (<b>a</b>) brackish water, (<b>b</b>) seawater, and (<b>c</b>) seawater bittern; and surfaces of Ti6Al4V after measurements in (<b>d</b>) brackish water, (<b>e</b>) seawater, and (<b>f</b>) seawater bittern.</p> "> Figure 7 Cont.
<p>SEM images of surface of Ti after potentiodynamic polarization measurements in (<b>a</b>) brackish water, (<b>b</b>) seawater, and (<b>c</b>) seawater bittern; and surfaces of Ti6Al4V after measurements in (<b>d</b>) brackish water, (<b>e</b>) seawater, and (<b>f</b>) seawater bittern.</p> "> Figure 8
<p>(<b>a</b>) SEM image of surface of Ti after potentiodynamic polarization measurements in seawater and (<b>b</b>) EDS point analysis in Spectrum 4.</p> "> Figure 9
<p>(<b>a</b>) SEM image of surface of Ti6Al4V after potentiodynamic polarization measurements in seawater bittern and (<b>b</b>) EDS point analysis in Spectrum 1.</p> "> Figure 10
<p>Three-dimensional optical profilometry images of surface of = Ti after potentiodynamic polarization measurements in (<b>a</b>) brackish water, (<b>b</b>) seawater, and (<b>c</b>) seawater bittern; and surfaces of Ti6Al4V after measurements in (<b>d</b>) brackish water, (<b>e</b>) seawater, and (<b>f</b>) seawater bittern.</p> "> Figure 11
<p>Three-dimensional appearance of corrosion pits and line profile measurement for Ti6Al4V electrode after potentiodynamic polarization measurements in seawater bittern.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Measurements
2.2. Surface Analysis
3. Materials and Methods
- Monitoring of the open circuit potential (EOC) for 60 min in which the value of the potential is recorded every 15 s;
- Electrochemical impedance spectroscopy measurement in a frequency range of 30 × 10−3 Hz to 50 × 103 Hz with the AC amplitude of 10 mV;
- Linear polarization method, in the potential range of ±20 mV according to EOC (v = 0.2 mV s−1);
- Potentiodynamic polarization method, in the potential area from −0.400 V to 2.0 V (v = 1 mV s−1).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haile, F.; Adkins, J.; Corradi, M. A review of the use of titanium for reinforcement of masonry structures. Materials 2022, 15, 4561. [Google Scholar] [CrossRef]
- Najafizadeh, M.; Yazdi, S.; Bozorg, M.; Mehran, G.-M.; Hosseinzadeh, M.; Zarrabian, M.; Cavaliere, P. Classification and applications of titanium and its alloys: A review. J. Alloys Compd. Commun. 2024, 3, 100019. [Google Scholar] [CrossRef]
- Torbati-Sarraf, H.; Ding, L.; Khakpour, I.; Daviran, G.; Poursaee, A. Unraveling the corrosion of the Ti–6Al–4V orthopedic alloy in phosphate-buffered saline (PBS) solution: Influence of frequency and potential. Corros. Mater. Degrad. 2024, 5, 276–288. [Google Scholar] [CrossRef]
- Lunde, L.; Seiersten, M. Offshore Application for titanium alloys. In Titanium and Titanium Alloys: Fundamentals and Applications; Leyens, C., Peters, M., Eds.; Wiley-VCH Verlag GmbH and Co.: Darmnstad, Germany, 2003; pp. 483–496. [Google Scholar] [CrossRef]
- Gudić, S.; Vrsalović, L.; Kvrgić, D.; Nagode, A. Electrochemical behaviour of Ti and Ti-6Al-4V alloy in phosphate buffered saline solution. Materials 2021, 14, 7495. [Google Scholar] [CrossRef] [PubMed]
- Thorhallsson, A.I.; Karlsdottir, S.N. Corrosion behaviour of titanium alloy and carbon steel in a high-temperature, single and mixed-phase, simulated geothermal environment containing H2S, CO2 and HCl. Corros. Mater. Degrad. 2021, 2, 190–209. [Google Scholar] [CrossRef]
- Takadoum, J. Review on corrosion, tribocorrosion and osseointegration of titanium alloys as biomaterials. Corros. Mater. Degrad. 2023, 4, 644–658. [Google Scholar] [CrossRef]
- Yang, J.; Song, Y.; Dong, K.; Han, E.-H. Research progress on the corrosion behavior of titanium alloys. Corros. Rev. 2023, 41, 4–20. [Google Scholar] [CrossRef]
- Wang, C.P.; Wang, H.Z.; Ruan, G.L.; Wang, S.H.; Xiao, Y.X.; Jiang, L.D. Applications and prospects of titanium and its alloys in seawater desalination industry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 033036. [Google Scholar] [CrossRef]
- Yan, S.; Song, G.-L.; Li, Z.; Wang, H.; Zheng, D.; Cao, F.; Harynova, M.; Dargusch, M.S.; Zhou, L. A state of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. J. Mater. Sci. Technol. 2018, 34, 421–435. [Google Scholar] [CrossRef]
- Prando, D.; Brenna, A.; Pedeferri, M. Corrosion of Titanium: Part 1: Aggressive environments and main forms of degradation. J. Appl. Biomater. Func. 2018, 15, 291–302. [Google Scholar] [CrossRef]
- Cvijović-Alagić, I.; Cvijović, Z.; Bajat, J.; Rakin, M. Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys. Corros. Sci. 2014, 83, 245–254. [Google Scholar] [CrossRef]
- Elshaer, R.N.; Ibrahim, K.M. Study of microstructure, mechanical properties, and corrosion behavior of as-cast Ni-Ti and Ti-6Al-4V alloys. J. Mater. Eng. Perform. 2023, 32, 7831–7845. [Google Scholar] [CrossRef]
- Ghisheer, M.M.M.; Esen, I.; Ahlatci, H.; Akın, B. Investigation of microstructure, mechanics, and corrosion properties of Ti6Al4V alloy in different solutions. Coatings 2024, 14, 277. [Google Scholar] [CrossRef]
- Naghavi, S.H.R.; Wang, H.; Varma, S.N.; Tamaddon, M.; Marghoub, A.; Galbraith, R.; Galbraith, J.; Moazen, M.; Hua, J.; Xu, W.; et al. On the morphological deviation in additive manufacturing of porous Ti6Al4V scaffold: A design consideration. Materials 2022, 15, 4729. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Du, C.; Wan, H.; Liu, Z.; Li, X. Influence of sulfides on the passivation behavior of titanium alloy TA2 on simulated seawater environments. Appl. Surf. Sci. 2018, 458, 198–209. [Google Scholar] [CrossRef]
- Mansfield, F.; Liu, G.; Xiao, H.; Tsai, C.H.; Little, B.J. The corrosion behavior of copper alloys, stainless steels and titanium in seawater. Corros. Sci. 1994, 36, 2063–2095. [Google Scholar] [CrossRef]
- Palraj, S.; Venkatachari, G. Effect of biofouling on corrosion behavior of grade 2 titanium in Mandapam seawaters. Desalination 2008, 230, 92–99. [Google Scholar] [CrossRef]
- Rao, T.S.; Kora, A.J.; Anupkumar, B.; Narasimhan, S.V.; Feser, R. Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris). Corros. Sci. 2005, 47, 1071–1084. [Google Scholar] [CrossRef]
- Nady, H.; El-Rabiei, M.M.; Samy, M. Corrosion behavior and electrochemical properties of carbon steel, commercial pure titanium, copper and copper–aluminum–nickel alloy in 3.5% sodium chloride containing sulfide ions. Egypt. J. Pet. 2016, 26, 79–94. [Google Scholar] [CrossRef]
- Yang, Z.G.; Gong, Y.; Yuan, J.Z. Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant. Part I: Electrochemical corrosion. Mater. Corros. 2012, 63, 7–17. [Google Scholar] [CrossRef]
- Su, B.; Wang, B.; Luo, L.; Wang, L.; Su, Y.; Xu, Y.; Li, B.; Li, T.; Huang, H.; Guo, J.; et al. Corrosion behaviour of a wrought Ti-6Al-3Nb-2Zr-1Mo alloy in artificial seawater with various fluoride concentration and pH values. Mater. Des. 2022, 214, 110416. [Google Scholar] [CrossRef]
- Gorynin, I.V. Titanium alloys for marine application. Mater. Sci. Eng. A 1999, 263, 112–116. [Google Scholar] [CrossRef]
- Shultz, R.W.; Baxter, C.F.; Boster, P.L. Applying titanium alloys in drilling and offshore production systems. JOM 2001, 53, 33–35. [Google Scholar] [CrossRef]
- Gurrappa, I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater. Charact. 2003, 51, 131–139. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, D.; Wang, E.; Yan, F.; Xiang, L.; Xie, Z. Corrosion degradation of Ti6Al4V alloys in simulated marine environments. Coatings 2022, 12, 1028. [Google Scholar] [CrossRef]
- Froes, F.H. Titanium Physical Metallurgy Processing and Applications; ASM International Materials Park: Novelty, OH, USA, 2015. [Google Scholar]
- Richaud-Minier, H.; Marchebois, H.; Gerard, P. Titanium and super stainless steel welded tubing solutions for sea water cooled heat exchangers. Mater. Technol. 2009, 24, 191–200. [Google Scholar] [CrossRef]
- Schumerth, D.J. Titanium tubing still going strong after 40 years. Power 2011, 155, 58–60. Available online: https://www.powermag.com/titanium-tubing-still-going-strong-after-40-years/ (accessed on 10 November 2024.).
- Zhang, D.; Liu, Y.; Liu, R.; Guan, X.; Xing, S.; Dou, X.; He, Z.; Zhang, X. Characterization of corrosion behavior of TA2 titanium alloy welded joints in seawater environment. Front. Chem. 2022, 10, 950768. [Google Scholar] [CrossRef]
- Shahba, R.M.A.; Ghannem, W.A.; El-Sayed El-Shenawy, A.; Ahmed, A.S.I.; Tantawy, S.M. Corrosion and Inhibition of Ti-6Al-4V Alloy in NaCl Solution. Int. J. Electrochem. Sci. 2011, 6, 5499–5509. [Google Scholar] [CrossRef]
- Casadebaigt, A.; Hugues, J.; Monceau, D. High Temperature Oxidation and Embrittlement at 500–600 °C of Ti-6Al-4V Alloy Fabricated by Laser and Electron Beam Melting. Corros. Sci. 2020, 175, 108875. [Google Scholar] [CrossRef]
- Bocchetta, P.; Chen, L.-Y.; Tardelli, J.D.C.; Reis, A.C.D.; Almeraya-Calderón, F.; Leo, P. Passive Layers and Corrosion Resistance of Biomedical Ti-6Al-4V and β-Ti Alloys. Coatings 2021, 11, 487. [Google Scholar] [CrossRef]
- Neacsu, E.I.; Constantin, V.; Yanushkevich, K.; Donath, C.; Anastasescu, M.; Popescu, M. Surface modification on Ti-6Al-4V alloy during corrosion in high temperature ionic liquid. Rev. Chem. 2020, 71, 207–219. [Google Scholar] [CrossRef]
- Ahmadian, Z.; Danaee, I.; Golozar, M.A. Effect of Surface Treatment on Corrosion Resistance of 304 Stainless Steel Implants in Tyrode Solution. Arch. Metall. Mater. 2014, 59, 25–30. [Google Scholar] [CrossRef]
- Cheng, J.; Li, J.; Yu, S.; Du, Z.; Dong, F.; Zhang, J.; Zhang, X. Corrosion Behavior of As-Cast Ti–10Mo–6Zr–4Sn–3Nb and Ti–6Al–4V in Hank’s Solution: A Comparison Investigation. Metals 2021, 11, 11. [Google Scholar] [CrossRef]
- Pan, J.; Thierry, D.; Leygraf, C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 1996, 41, 1143–1153. [Google Scholar] [CrossRef]
- Dai, N.; Zhang, L.C.; Zhang, J.; Zhang, X.; Ni, Q.; Chen, Y.; Wu, M.; Yang, C. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros. Sci. 2016, 111, 703–710. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy, Theory, Experiment, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bai, Y.; Li, S.J.; Prima, F.; Hao, Y.L.; Yang, R. Electrochemical corrosion behavior of Ti-24Nb-4Zr-8Sn alloy in a simulated physiological environment. Appl. Surf. Sci. 2012, 258, 4035–4040. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, M.; Han, C.; Zhao, Z.; Jia, X.; Zhao, M.; Li, S.; Liu, J. Evolution and corrosion resistance of passive film with polarization potential on Ti-5Al-5Mo-5V-1Fe-1Cr alloy in simulated marine environments. Corros. Sci. 2023, 221, 111334. [Google Scholar] [CrossRef]
- Available online: https://www.iso.org/obp/ui/#iso:std:iso:25178:-2:ed-2:v1:en (accessed on 17 December 2024.).
- Jakic, J.; Jakić, M.; Yousefi, S.; Labor, M. PVA assisted preparation of Mg(OH)2/MgO nanostructures from seawater bittern through precipitation method. Sadhana 2024, 49, 139. [Google Scholar] [CrossRef]
Medium | icorr (μA cm−2) | Ecorr (V) | Rp (kΩ cm2) |
---|---|---|---|
Ti | |||
brackish water | 0.3 | −0.405 | 413.00 |
seawater | 1.6 | −0.455 | 52.24 |
seawater bittern | 1.2 | −0.600 | 147.00 |
Ti6Al4V | |||
brackish water | 0.15 | −0.413 | 511.56 |
seawater | 0.9 | −0.585 | 208.81 |
seawater bittern | 2.2 | −0.628 | 36.75 |
Medium | Q1 × 106 (Ω−1 sn cm−2) | n1 | C1 (µF cm−2) | R1 (Ω cm2) | Q2 × 106 (Ω−1 sn cm−2) | n2 | C2 (µF cm−2) | d2 (nm) | R2 (kΩ cm2) |
---|---|---|---|---|---|---|---|---|---|
Ti | |||||||||
brackish water | 61.57 | 0.87 | 28.90 | 100.23 | 39.32 | 0.87 | 42.84 | 2.00 | 414.96 |
seawater | 110.91 | 0.85 | 46.28 | 62.27 | 50.75 | 0.85 | 56.27 | 1.52 | 53.48 |
seawater bittern | 78.45 | 0.85 | 31.81 | 74.76 | 44.99 | 0.86 | 48.54 | 1.77 | 148.30 |
Ti6Al4V | |||||||||
brackish water | 56.78 | 0.87 | 26.79 | 112.65 | 34.32 | 0.89 | 36.53 | 2.35 | 508.54 |
seawater | 73.83 | 0.86 | 32.36 | 86.32 | 40.28 | 0.86 | 43.87 | 1.96 | 208.09 |
seawater bittern | 121.16 | 0.85 | 48.57 | 45.41 | 61.39 | 0.83 | 65.36 | 1.31 | 37.48 |
Elements (wt%) | Spectrum 1 | Spectrum 2 | Spectrum 3 | Spectrum 4 | Spectrum 5 |
---|---|---|---|---|---|
O | 11.05 | 8.63 | 10.78 | 13.45 | 9.17 |
Na | - | - | - | - | - |
Mg | - | - | - | 0.05 | - |
Al | 0.44 | 0.28 | 0.28 | - | 0.38 |
Cl | - | - | - | - | - |
K | - | - | - | - | - |
Ca | 0.05 | 0.38 | 0.10 | 0.22 | - |
Ti | 87.94 | 90.25 | 88.83 | 86.28 | 90.00 |
Cu | 0.53 | 0.46 | - | - | 0.45 |
Si | - | - | 0.11 | - | - |
Elements (wt%) | Spectrum 1 | Spectrum 2 | Spectrum 3 | Spectrum 4 | Spectrum 5 | Spectrum 6 | Spectrum 7 | Spectrum 8 | Spectrum 9 |
---|---|---|---|---|---|---|---|---|---|
O | 8.64 | 13.58 | 8.92 | 5.77 | 26.27 | 7.78 | 6.67 | 13.31 | 6.76 |
Na | - | - | - | - | - | 0.12 | - | 0.08 | - |
Mg | 2.14 | 2.47 | 0.59 | - | 0.86 | 1.07 | - | 0.24 | 0.45 |
Al | 4.24 | 4.86 | 5.63 | 6.23 | 8.15 | 5.24 | 5.59 | 5.21 | 5.76 |
Cl | 2.11 | 1.07 | 0.28 | - | 0.64 | 0.84 | - | 0.27 | 0.22 |
K | 0.74 | 0.26 | - | - | 0.15 | 0.22 | - | - | - |
Ca | - | 0.04 | 0.15 | 0.07 | - | 0.06 | - | 0.43 | - |
Ti | 77.30 | 72.41 | 80.43 | 84.10 | 60.75 | 81.18 | 82.67 | 76.93 | 82.16 |
V | 4.04 | 4.30 | 3.14 | 3.02 | 2.52 | 3.32 | 4.07 | 3.43 | 3.76 |
Cu | 0.78 | 0.86 | 0.67 | 0.81 | 0.66 | - | 1.0 | - | 0.90 |
S | - | 0.14 | 0.15 | - | - | 0.17 | - | 0.12 | - |
Medium | pH | Conductivity (mS cm−1) | Density (g cm−3) | Salinity (ppt) | TDS |
---|---|---|---|---|---|
brackish water | 7.90 | 21.3 | 1.025 | 6.1 ppt | 7.01 |
seawater | 7.89 | 43.6 | 1.030 | 29.9 ppt | 29.99 |
seawater bittern | 6.21 | 133.3 | 1.305 | 69 ppt * | 62.3 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrsalović, L.; Gudić, S.; Talijančić, A.; Jakić, J.; Krolo, J.; Danaee, I. Corrosion Behavior of Ti and Ti6Al4V Alloy in Brackish Water, Seawater, and Seawater Bittern. Corros. Mater. Degrad. 2024, 5, 641-656. https://doi.org/10.3390/cmd5040031
Vrsalović L, Gudić S, Talijančić A, Jakić J, Krolo J, Danaee I. Corrosion Behavior of Ti and Ti6Al4V Alloy in Brackish Water, Seawater, and Seawater Bittern. Corrosion and Materials Degradation. 2024; 5(4):641-656. https://doi.org/10.3390/cmd5040031
Chicago/Turabian StyleVrsalović, Ladislav, Senka Gudić, Antonia Talijančić, Jelena Jakić, Jure Krolo, and Iman Danaee. 2024. "Corrosion Behavior of Ti and Ti6Al4V Alloy in Brackish Water, Seawater, and Seawater Bittern" Corrosion and Materials Degradation 5, no. 4: 641-656. https://doi.org/10.3390/cmd5040031
APA StyleVrsalović, L., Gudić, S., Talijančić, A., Jakić, J., Krolo, J., & Danaee, I. (2024). Corrosion Behavior of Ti and Ti6Al4V Alloy in Brackish Water, Seawater, and Seawater Bittern. Corrosion and Materials Degradation, 5(4), 641-656. https://doi.org/10.3390/cmd5040031