Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview
<p>Workflow describing the selection process involved in the presented review paper.</p> "> Figure 2
<p>Distribution of the documents selected for structuring the presented review paper on smart devices for monitoring rehabilitation and tracking sports activities.</p> "> Figure 3
<p>Distribution of the databases (<b>a</b>) and main keywords (<b>b</b>) used for searching the documents included in this review.</p> "> Figure 4
<p>Schematic illustration of a subject wearing tendon-inspired motion detection devices and pictures of the integrated device into wearable belts (<b>a</b>) [<a href="#B24-sensors-23-01856" class="html-bibr">24</a>]. The main angles measured on the lower limbs for rehabilitation monitoring and sports tracking are highlighted in (<b>b</b>).</p> "> Figure 5
<p>Plots representing the parameters and gestures monitored for the different typologies of clinical rehabilitation: post-stroke (<b>a</b>), post-heart attack (<b>b</b>) and rehabilitation from an injury to the lower limbs (<b>c</b>). Parameters and gestures monitored in sports activity: running monitoring (<b>d</b>) and high jump tracking (<b>e</b>).</p> "> Figure 6
<p>Schematic illustration of (<b>a</b>) inertial sensors (“reproduced with permission from S. Z. Homayounfar et al., SLAS Technology; published by Elsevier, 2020” [<a href="#B79-sensors-23-01856" class="html-bibr">79</a>]); (<b>b</b>) piezoresistive (<b>i</b>), piezoelectric (<b>ii</b>), capacitive (<b>iii</b>), and triboelectric (<b>iv</b>) sensors [<a href="#B80-sensors-23-01856" class="html-bibr">80</a>]).</p> "> Figure 7
<p>Radar charts for comparison of the main transduction mechanisms to monitor human bio–physical parameters according to the area of sensor application on the body. The scale (0–10) indicates the “frequency” with which a specific sensing technology is applied for monitoring a given body area. Additionally, the analyzed population (N) is reported for each sensing technology.</p> "> Figure 8
<p>Radar chart comparing the considered transduction mechanisms according to the main detected biophysical quantities. The scale (0–10) indicates the “frequency” with which a specific sensing technology is applied for monitoring the specific parameter.</p> "> Figure 8 Cont.
<p>Radar chart comparing the considered transduction mechanisms according to the main detected biophysical quantities. The scale (0–10) indicates the “frequency” with which a specific sensing technology is applied for monitoring the specific parameter.</p> "> Figure 9
<p>A capacitive pressure sensor’s construction (<b>a</b>). Illustration of the ESIM’s (eggshell inner membrane) structural elements (<b>i</b>); schematic showing the construction of MXene sheets (<b>ii</b>); and the manufacture of flexible capacitive pressure sensors (<b>iii</b>). Schematic sensor diagram detecting human physiological signals and body motions. From top left to bottom right: vocal cord vibration signal when pronouncing the word “studying”; capacitance responses from the repeated air blowing, clenching and releasing of finger/knee/elbow bending, and walking (<b>b</b>) [<a href="#B29-sensors-23-01856" class="html-bibr">29</a>]. Sensor output during exhalation and inhalation acquired as capacitance variation during deep breathing, measured in different positions: standing, sitting, and lying (<b>c</b>). Variation in the capacity during the slight vibrations of the vocal cords allowed to recognize “Nice to meet you”, “Capacitance”, “Research is my forever love”, “The University of Manchester”, “Thank you”, and “Freedom” (<b>d</b>) [<a href="#B53-sensors-23-01856" class="html-bibr">53</a>].</p> "> Figure 9 Cont.
<p>A capacitive pressure sensor’s construction (<b>a</b>). Illustration of the ESIM’s (eggshell inner membrane) structural elements (<b>i</b>); schematic showing the construction of MXene sheets (<b>ii</b>); and the manufacture of flexible capacitive pressure sensors (<b>iii</b>). Schematic sensor diagram detecting human physiological signals and body motions. From top left to bottom right: vocal cord vibration signal when pronouncing the word “studying”; capacitance responses from the repeated air blowing, clenching and releasing of finger/knee/elbow bending, and walking (<b>b</b>) [<a href="#B29-sensors-23-01856" class="html-bibr">29</a>]. Sensor output during exhalation and inhalation acquired as capacitance variation during deep breathing, measured in different positions: standing, sitting, and lying (<b>c</b>). Variation in the capacity during the slight vibrations of the vocal cords allowed to recognize “Nice to meet you”, “Capacitance”, “Research is my forever love”, “The University of Manchester”, “Thank you”, and “Freedom” (<b>d</b>) [<a href="#B53-sensors-23-01856" class="html-bibr">53</a>].</p> "> Figure 10
<p>PVDF flexible sensor and the corresponding output voltage over time, and position for the detection of heartbeat, breathing, swallowing, and chewing. Additionally, maximum voltage values depending on the flexion levels of the finger, upper bending, lower bending, and wrist rotation are also reported (<b>a</b>) [<a href="#B21-sensors-23-01856" class="html-bibr">21</a>]. Flexible piezoelectric sensor with the corresponding exploded drawing showing the multilayered structure (<b>b</b>). Here the deglutition wave recognition and segmentation with the comparison of the sEMG recorded signals of a single swallow action are reported. Additionally, spontaneous frequency, duration time, and latency of a swallowing act are also displayed [<a href="#B34-sensors-23-01856" class="html-bibr">34</a>].</p> "> Figure 10 Cont.
<p>PVDF flexible sensor and the corresponding output voltage over time, and position for the detection of heartbeat, breathing, swallowing, and chewing. Additionally, maximum voltage values depending on the flexion levels of the finger, upper bending, lower bending, and wrist rotation are also reported (<b>a</b>) [<a href="#B21-sensors-23-01856" class="html-bibr">21</a>]. Flexible piezoelectric sensor with the corresponding exploded drawing showing the multilayered structure (<b>b</b>). Here the deglutition wave recognition and segmentation with the comparison of the sEMG recorded signals of a single swallow action are reported. Additionally, spontaneous frequency, duration time, and latency of a swallowing act are also displayed [<a href="#B34-sensors-23-01856" class="html-bibr">34</a>].</p> "> Figure 11
<p>Schematic illustration of fabricated TSR and the working mechanism in one operating cycle (<b>a</b>). Open circuit voltage and short circuit current measured on TSR–B and TSR–T60, including the tension produced when the tilting varies, the pressure sensitivity of both the sensors, the output voltage when the humidity increases up to 80%, and the power density according to the load resistors (<b>b</b>) [<a href="#B33-sensors-23-01856" class="html-bibr">33</a>].</p> "> Figure 12
<p>Examples of capacitive and piezoresistive hybrid sensors: (<b>a</b>) The developed sole with the piezoelectric integrated sensors, the acquisition system, and the Bluetooth module. Below, the characteristic curves R vs. F (in Kgf and with a logarithmic scale) for five Velostat-based pressure sensors are shown for different sizes, 3 cm × 3 cm, 1 cm × 1 cm, and 3 cm × 1 cm [<a href="#B63-sensors-23-01856" class="html-bibr">63</a>]. The yarn matrix structure in the inset shows some examples of the final fabric’s elongation, bending, and twisting (<b>b</b>). A map of the pressure distribution during the hit cycle and resistance variation at different knee bending angles are shown on the right. Some practical scenarios of using the integrated sensor on the chest and knee are also reported [<a href="#B40-sensors-23-01856" class="html-bibr">40</a>].</p> "> Figure 13
<p>Piezoelectric sensors: PVDF/BaTiO<sub>3</sub>-based sensor integrated into a sole with the corresponding output currents generated during squatting, walking, and running activities, elbow extension and flexion to 60°, 90°, and 120°, and the pronunciation of short sentences (<b>a</b>) [<a href="#B22-sensors-23-01856" class="html-bibr">22</a>]. PVDF/DMF-based sensor applied on an athlete’s elbow and the corresponding voltage signals generated at different bending angles and during different physical activities (<b>b</b>) [<a href="#B39-sensors-23-01856" class="html-bibr">39</a>]. A schematic diagram of different bending angles of the palm during the test of the PVDF sensor. The output piezoelectric voltages of three subjects when finger and elbow bending angle change are also reported (<b>c</b>) [<a href="#B42-sensors-23-01856" class="html-bibr">42</a>]. Soccer player motion monitoring test using the PVDF–HFP-based sensor (<b>d</b>). Pictures of a soccer players’ actions, showing normal ankle motion, abnormal ankle motion, normal knee motion, and abnormal knee motion. Moreover, the “brake” action of the same motion is also monitored and reported [<a href="#B64-sensors-23-01856" class="html-bibr">64</a>].</p> "> Figure 14
<p>BSRW–TENG sensor applied to the elbow for monitoring biceps curl, leg curl, running, and walking—before and after sweating—with the corresponding plots of generated output voltages [<a href="#B41-sensors-23-01856" class="html-bibr">41</a>].</p> "> Figure 15
<p>Radar chart showing a comparison between the analyzed sensors and devices according to their technological maturity, flexibility, ability for full integration into clothes and garments, sensitivity, and range of detection.</p> "> Figure 15 Cont.
<p>Radar chart showing a comparison between the analyzed sensors and devices according to their technological maturity, flexibility, ability for full integration into clothes and garments, sensitivity, and range of detection.</p> ">
Abstract
:1. Introduction
- A detailed classification of human physiological parameters useful for extracting information about a patient’s health status during post-operative rehabilitation and sports performances.
- An in-depth analysis of the transduction mechanisms for acquiring parameters related to body motions; also, innovative wearable technologies and sensors to monitor human activities are discussed, ranked by high comfort and flexibility.
- A comprehensive overview of available wearable technologies for monitoring motions of body parts and physiological parameters to enhance rehabilitation therapies and customize athletes’ training.
- A comparison of the presented review with similar ones reported in the literature; its strengths lie in its completeness and level of detail, dealing with both sensing systems for monitoring rehabilitation and sports performances. In addition, it does not limit the discussion to specific sensor categories, applications, or monitored body areas, as detailed in the comparison reported in Section 6. The joint discussion of the two applications represents one of the novelties of the presented work, rarely treated in other review articles with the presented level of detail. In addition, the proposed work reports comparative analyses related to the discussed scientific studies from the performance point of view, providing useful insights for determining the best sensing strategies for developing future wearable systems for monitoring the human body.
Selection and Exclusion Criteria for the Presented Review Paper
2. Classification of Human Physiological Parameters
3. Transduction Mechanisms for the Acquisition of Human Parameters from the Body
4. Figures of Merit for Performance Comparison
5. Overview of Available Wearable Technologies for Body Motion Monitoring
5.1. Devices and Systems for Post-Operative Rehabilitation
5.2. Devices and Systems for Tracking an Athlete’s Performance
5.3. Overview of Datasets Related to Sport and Rehabilitation Applications
6. Conclusions and Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seshadri, D.R.; Li, R.T.; Voos, J.E.; Rowbottom, J.R.; Alfes, C.M.; Zorman, C.A.; Drummond, C.K. Wearable Sensors for Monitoring the Physiological and Biochemical Profile of the Athlete. Npj Digit. Med. 2019, 2, 114. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Thom, M.L.; Harlow, E.R.; Gabbett, T.J.; Geletka, B.J.; Hsu, J.J.; Drummond, C.K.; Phelan, D.M.; Voos, J.E. Wearable Technology and Analytics as a Complementary Toolkit to Optimize Workload and to Reduce Injury Burden. Front. Sport. Act. Living 2021, 2, 228. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B.; Fei, P.; Shakeel, P.M.; Samuel, R.D.J. Computational Efficient Wearable Sensor Network Health Monitoring System for Sports Athletics Using IoT. Aggress. Violent Behav. 2020, 101541. [Google Scholar] [CrossRef]
- Huifeng, W.; Kadry, S.N.; Raj, E.D. Continuous Health Monitoring of Sportsperson Using IoT Devices Based Wearable Technology. Comput. Commun. 2020, 160, 588–595. [Google Scholar] [CrossRef]
- Altman, A.D.; Helpman, L.; McGee, J.; Samouëlian, V.; Auclair, M.-H.; Brar, H.; Nelson, G.S. Enhanced Recovery after Surgery: Implementing a New Standard of Surgical Care. CMAJ 2019, 191, E469–E475. [Google Scholar] [CrossRef]
- Morrison, B.; Kelliher, L.; Jones, C. The Economic Benefits of Enhanced Recovery after Surgery Programmes. Dig. Med. Res. 2019, 2, 20. [Google Scholar] [CrossRef]
- Zhang, C.; Lai, C.-F.; Lai, Y.-H.; Wu, Z.-W.; Chao, H.-C. An Inferential Real-Time Falling Posture Reconstruction for Internet of Healthcare Things. J. Netw. Comput. Appl. 2017, 89, 86–95. [Google Scholar] [CrossRef]
- Jiang, Y. Combination of Wearable Sensors and Internet of Things and Its Application in Sports Rehabilitation. Comput. Commun. 2020, 150, 167–176. [Google Scholar] [CrossRef]
- Zhao, Y.; You, Y. Design and Data Analysis of Wearable Sports Posture Measurement System Based on Internet of Things. Alex. Eng. J. 2021, 60, 691–701. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Li, R.T.; Voos, J.E.; Rowbottom, J.R.; Alfes, C.M.; Zorman, C.A.; Drummond, C.K. Wearable Sensors for Monitoring the Internal and External Workload of the Athlete. npj Digit. Med. 2019, 2, 44–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahadori, S.; Immins, T.; Wainwright, T.W. A Review of Wearable Motion Tracking Systems Used in Rehabilitation Following Hip and Knee Replacement. J. Rehabil. Assist. Technol. Eng. 2018, 5, 2055668318771816. [Google Scholar] [CrossRef]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.; Bao, Z.; Lee, T.-W. Wearable Bioelectronics: Opportunities for Chemistry. Acc. Chem. Res. 2019, 52, 521–522. [Google Scholar] [CrossRef]
- Calabrese, B.; Velázquez, R.; Del-Valle-Soto, C.; de Fazio, R.; Giannoccaro, N.I.; Visconti, P. Solar-Powered Deep Learning-Based Recognition System of Daily Used Objects and Human Faces for Assistance of the Visually Impaired. Energies 2020, 13, 6104. [Google Scholar] [CrossRef]
- de Fazio, R.; Cafagna, D.; Marcuccio, G.; Minerba, A.; Visconti, P. A Multi-Source Harvesting System Applied to Sensor-Based Smart Garments for Monitoring Workers’ Bio-Physical Parameters in Harsh Environments. Energies 2020, 13, 2161. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Hernández-Belmonte, A.; Martínez-Cava, A.; Vetrovsky, T.; Steffl, M.; Courel-Ibáñez, J. Effects of Range of Motion on Resistance Training Adaptations: A Systematic Review and Meta-Analysis. Scand. J. Med. Sci. Sport. 2021, 31, 1866–1881. [Google Scholar] [CrossRef]
- Kumar, R.R.P.; Muknahallipatna, S.; McInroy, J.; McKenna, M.; Franc, L. Real-Time Range of Motion Measurement of Physical Therapeutic Exercises. J. Comput. Commun. 2017, 5, 19–42. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, F.; Jia, C.; Zhao, T.; Mao, Y. A Stretchable and Self-Healing Hybrid Nano-Generator for Human Motion Monitoring. Nanomaterials 2021, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Guimarães, V.; Sousa, I. Joint Angles Tracking for Rehabilitation at Home Using Inertial Sensors: A Feasibility Study. In Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, Barcelona, Spain, 23–26 May 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 146–154. [Google Scholar]
- Bell, K.M.; Onyeukwu, C.; McClincy, M.P.; Allen, M.; Bechard, L.; Mukherjee, A.; Hartman, R.A.; Smith, C.; Lynch, A.D.; Irrgang, J.J. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee. Sensors 2019, 19, 1021. [Google Scholar] [CrossRef]
- Wang, A.; Hu, M.; Zhou, L.; Qiang, X. Self-Powered Wearable Pressure Sensors with Enhanced Piezoelectric Properties of Aligned P(VDF-TrFE)/MWCNT Composites for Monitoring Human Physiological and Muscle Motion Signs. Nanomaterials 2018, 8, 1021. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Tan, C.; Shi, K.; Li, J.; Wang, X.-X.; Sun, B.; Huang, X.; Long, Y.-Z.; Jiang, P. Wireless Piezoelectric Devices Based on Electrospun PVDF/BaTiO3 NW Nanocomposite Fibers for Human Motion Monitoring. Nanoscale 2018, 10, 17751–17760. [Google Scholar] [CrossRef]
- Gaetani, F.; Primiceri, P.; Antonio Zappatore, G.; Visconti, P. Hardware Design and Software Development of a Motion Control and Driving System for Transradial Prosthesis Based on a Wireless Myoelectric Armband. IET Sci. Meas. Technol. 2019, 13, 354–362. [Google Scholar] [CrossRef]
- Kim, H.; Lee, K.; Jo, G.; Kim, J.-S.; Lim, M.T.; Cha, Y. Tendon-Inspired Piezoelectric Sensor for Biometric Application. IEEE/ASME Trans. Mechatron. 2021, 26, 2538–2547. [Google Scholar] [CrossRef]
- Tognetti, A.; Lorussi, F.; Mura, G.D.; Carbonaro, N.; Pacelli, M.; Paradiso, R.; Rossi, D.D. New Generation of Wearable Goniometers for Motion Capture Systems. J. NeuroEng. Rehabil. 2014, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, D.; Xu, C.; Wang, Z.; Shu, S.; Sun, Z.; Tang, W.; Wang, Z.L. Sensing of Joint and Spinal Bending or Stretching via a Retractable and Wearable Badge Reel. Nat. Commun 2021, 12, 2950. [Google Scholar] [CrossRef]
- Kim, K.; Jung, M.; Jeon, S.; Bae, J. Robust and Scalable Three-Dimensional Spacer Textile Pressure Sensor for Human Motion Detection. Smart Mater. Struct. 2019, 28, 065019. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Adv. Mater. 2017, 29, 1700321. [Google Scholar] [CrossRef]
- He, X.; Liu, Z.; Shen, G.; He, X.; Liang, J.; Zhong, Y.; Liang, T.; He, J.; Xin, Y.; Zhang, C.; et al. Microstructured Capacitive Sensor with Broad Detection Range and Long-Term Stability for Human Activity Detection. Npj Flex. Electron. 2021, 5, 17. [Google Scholar] [CrossRef]
- Dan, L.; Shi, S.; Chung, H.-J.; Elias, A. Porous Polydimethylsiloxane–Silver Nanowire Devices for Wearable Pressure Sensors. ACS Appl. Nano Mater. 2019, 2, 4869–4878. [Google Scholar] [CrossRef]
- Massaroni, C.; Di Tocco, J.; Lo Presti, D.; Longo, U.G.; Miccinilli, S.; Sterzi, S.; Formica, D.; Saccomandi, P.; Schena, E. Smart Textile Based on Piezoresistive Sensing Elements for Respiratory Monitoring. IEEE Sens. J. 2019, 19, 7718–7725. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, X.; Liu, Y.; Fu, Q. Highly Sensitive, Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of Carbon Nanotubes/Cellulose Nanocrystal into Electrospun Polyurethane Membranes. ACS Appl. Mater. Interfaces 2019, 11, 12968–12977. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Cho, H.; Park, J.; Kim, D. Self-Powered and Flexible Triboelectric Sensors with Oblique Morphology towards Smart Swallowing Rehabilitation Monitoring System. Materials 2022, 15, 2240. [Google Scholar] [CrossRef] [PubMed]
- Natta, L.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Rizzi, F.; Scarpa, E.; Qualtieri, A.; Todaro, M.T.; Sallustio, V.; De Vittorio, M. Conformable AlN Piezoelectric Sensors as a Non-Invasive Approach for Swallowing Disorder Assessment. ACS Sens. 2021, 6, 1761–1769. [Google Scholar] [CrossRef]
- Wilhoite, S.; Mutchler, J.A.; Barry, A.M.; Li, L. Ankle-Knee Initial Contact Angle and Latency to Maximum Angle Are Affected by Prolonged Run. Int. J. Exerc. Sci. 2021, 14, 33–44. [Google Scholar] [PubMed]
- Kubo, K.; Miyazaki, D.; Yamada, K.; Shimoju, S.; Tsunoda, N. Are the Knee and Ankle Angles at Contact Related to the Tendon Properties of Lower Limbs in Long Distance Runners? Springerplus 2016, 5, 151. [Google Scholar] [CrossRef]
- Markström, J.L.; Grip, H.; Schelin, L.; Häger, C.K. Dynamic Knee Control and Movement Strategies in Athletes and Non-athletes in Side Hops: Implications for Knee Injury. Scand. J. Med. Sci Sport. 2019, 29, 1181–1189. [Google Scholar] [CrossRef]
- Buehler, C.; Koller, W.; De Comtes, F.; Kainz, H. Quantifying Muscle Forces and Joint Loading During Hip Exercises Performed With and Without an Elastic Resistance Band. Front. Sport. Act. Living 2021, 3, 223. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, C.; Zhu, Y.; Zhao, T. An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills. Sensors 2021, 21, 5144. [Google Scholar] [CrossRef]
- Ma, Y.; Ouyang, J.; Raza, T.; Li, P.; Jian, A.; Li, Z.; Liu, H.; Chen, M.; Zhang, X.; Qu, L.; et al. Flexible All-Textile Dual Tactile-Tension Sensors for Monitoring Athletic Motion during Taekwondo. Nano Energy 2021, 85, 105941. [Google Scholar] [CrossRef]
- Li, W.; Lu, L.; Kottapalli, A.G.P.; Pei, Y. Bioinspired Sweat-Resistant Wearable Triboelectric Nanogenerator for Movement Monitoring during Exercise. Nano Energy 2022, 95, 107018. [Google Scholar] [CrossRef]
- Liu, W.; Long, Z.; Yang, G.; Xing, L. A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data. Biosensors 2022, 12, 60. [Google Scholar] [CrossRef]
- Mariello, M.; Fachechi, L.; Guido, F.; De Vittorio, M. Conformal, Ultra-Thin Skin-Contact-Actuated Hybrid Piezo/Triboelectric Wearable Sensor Based on AlN and Parylene-Encapsulated Elastomeric Blend. Adv. Funct. Mater. 2021, 31, 2101047. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Z.; Yan, H.; Peng, Q.; Wang, R.; Barkey, M.E.; Jeon, J.-W.; Wujcik, E.K. Ultrastretchable Conductive Polymer Complex as a Strain Sensor with a Repeatable Autonomous Self-Healing Ability. ACS Appl. Mater. Interfaces 2019, 11, 20453–20464. [Google Scholar] [CrossRef]
- Donahue, S.R.; Hahn, M.E. Validation of Running Gait Event Detection Algorithms in a Semi-Uncontrolled Environment. Sensors 2022, 22, 3452. [Google Scholar] [CrossRef]
- Masihi, S.; Panahi, M.; Maddipatla, D.; Hanson, A.J.; Bose, A.K.; Hajian, S.; Palaniappan, V.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. Highly Sensitive Porous PDMS-Based Capacitive Pressure Sensors Fabricated on Fabric Platform for Wearable Applications. ACS Sens. 2021, 6, 938–949. [Google Scholar] [CrossRef]
- Saponara, S. Wearable Biometric Performance Measurement System for Combat Sports. IEEE Trans. Instrum. Meas. 2017, 66, 2545–2555. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Ramírez-Campillo, R.; Boullosa, D.; Jiménez-Reyes, P.; Latorre-Román, P.Á. Vertical Jumping as a Monitoring Tool in Endurance Runners: A Brief Review. J. Hum. Kinet 2021, 80, 297–308. [Google Scholar] [CrossRef]
- Worsey, M.T.; Espinosa, H.G.; Shepherd, J.B.; Thiel, D.V. Inertial Sensors for Performance Analysis in Combat Sports: A Systematic Review. Sports 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hou, X.; Geng, W.; Mu, J.; Zhang, L.; Wang, X.; He, J.; Xiong, J.; Chou, X. Human Movement Monitoring and Behavior Recognition for Intelligent Sports Using Customizable and Flexible Triboelectric Nanogenerator. Sci. China Technol. Sci. 2022, 65, 826–836. [Google Scholar] [CrossRef]
- Cuperman, R.; Jansen, K.M.B.; Ciszewski, M.G. An End-to-End Deep Learning Pipeline for Football Activity Recognition Based on Wearable Acceleration Sensors. Sensors 2022, 22, 1347. [Google Scholar] [CrossRef]
- Cosoli, G.; Antognoli, L.; Veroli, V.; Scalise, L. Accuracy and Precision of Wearable Devices for Real-Time Monitoring of Swimming Athletes. Sensors 2022, 22, 4726. [Google Scholar] [CrossRef]
- Chen, L.; Lu, M.; Yang, H.; Salas Avila, J.R.; Shi, B.; Ren, L.; Wei, G.; Liu, X.; Yin, W. Textile-Based Capacitive Sensor for Physical Rehabilitation via Surface Topological Modification. ACS Nano 2020, 14, 8191–8201. [Google Scholar] [CrossRef]
- Ianculescu, M.; Andrei, B.; Alexandru, A. A Smart Assistance Solution for Remotely Monitoring the Orthopaedic Rehabilitation Process Using Wearable Technology: Re.Flex System. Stud. Inform. Control 2019, 28, 317–326. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, Y. Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires. Nanoscale 2014, 6, 2345–2352. [Google Scholar] [CrossRef]
- Ge, J.; Sun, L.; Zhang, F.-R.; Zhang, Y.; Shi, L.-A.; Zhao, H.-Y.; Zhu, H.-W.; Jiang, H.-L.; Yu, S.-H. A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties. Adv. Mater. 2016, 28, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Teo, S.; Liu, J. Liquid-Metal-Painted Stretchable Capacitor Sensors for Wearable Healthcare Electronics. J. Med. Biol. Eng. 2016, 36, 265–272. [Google Scholar] [CrossRef]
- Yi, F.; Wang, X.; Niu, S.; Li, S.; Yin, Y.; Dai, K.; Zhang, G.; Lin, L.; Wen, Z.; Guo, H.; et al. A Highly Shape-Adaptive, Stretchable Design Based on Conductive Liquid for Energy Harvesting and Self-Powered Biomechanical Monitoring. Sci Adv. 2016, 2, e1501624. [Google Scholar] [CrossRef] [PubMed]
- Maceira-Elvira, P.; Popa, T.; Schmid, A.-C.; Hummel, F.C. Wearable Technology in Stroke Rehabilitation: Towards Improved Diagnosis and Treatment of Upper-Limb Motor Impairment. J. NeuroEng. Rehabil. 2019, 16, 20. [Google Scholar] [CrossRef]
- Li, G.; Dai, K.; Ren, M.; Wang, Y.; Zheng, G.; Liu, C.; Shen, C. Aligned Flexible Conductive Fibrous Networks for Highly Sensitive, Ultrastretchable and Wearable Strain Sensors. J. Mater. Chem. C 2018, 6, 6575–6583. [Google Scholar] [CrossRef]
- Park, S.W.; Das, P.S.; Chhetry, A.; Park, J.Y. A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System. IEEE Sens. J. 2017, 17, 6558–6564. [Google Scholar] [CrossRef]
- Tan, Y.; Ivanov, K.; Mei, Z.; Li, H.; Li, H.; Lubich, L.; Wang, C.; Wang, L. A Soft Wearable and Fully-Textile Piezoresistive Sensor for Plantar Pressure Capturing. Micromachines 2021, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- de Fazio, R.; Perrone, E.; Velázquez, R.; De Vittorio, M.; Visconti, P. Development of a Self-Powered Piezo-Resistive Smart Insole Equipped with Low-Power BLE Connectivity for Remote Gait Monitoring. Sensors 2021, 21, 4539. [Google Scholar] [CrossRef]
- Li, G.-Y.; Li, J.; Li, Z.-J.; Zhang, Y.-P.; Zhang, X.; Wang, Z.-J.; Han, W.-P.; Sun, B.; Long, Y.-Z.; Zhang, H.-D. Hierarchical PVDF-HFP/ZnO Composite Nanofiber–Based Highly Sensitive Piezoelectric Sensor for Wireless Workout Monitoring. Adv. Compos. Hybrid. Mater. 2021, 5, 766–775. [Google Scholar] [CrossRef]
- Tan, S.; Li, Y.; Fang, F.; Li, L.; Yan, Z.; Liu, D.; Sun, Q. A Microfiber Probe-Based Wearable Sensor for Human Healthcare Monitoring. In Proceedings of the Optical Fiber Sensors Conference 2020 Special Edition (2020), Paper W4.3, Washington, WA, USA, 8–12 June 2020; Optica Publishing Group: Washington, DC, USA, 2020; pp. 1–12. [Google Scholar]
- Barrias, A.; Rodriguez, G.; Casas, J.R.; Villalba, S. Application of Distributed Optical Fiber Sensors for the Health Monitoring of Two Real Structures in Barcelona. Struct. Infrastruct. Eng. 2018, 14, 967–985. [Google Scholar] [CrossRef]
- Quandt, B.M.; Scherer, L.J.; Boesel, L.F.; Wolf, M.; Bona, G.-L.; Rossi, R.M. Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles. Adv. Healthc. Mater. 2015, 4, 330–355. [Google Scholar] [CrossRef] [PubMed]
- de Fátima Domingues, M.; Tavares, C.; Leite, T.; Alberto, N.; Leitão, C.; Marques, C.; Radwan, A.; Rocon, E.; André, P.A. Fiber Bragg Gratings as E-Health Enablers: An. Overview for Gait Analysis Applications; IntechOpen: London, UK, 2018; ISBN 978-1-78985-352-0. [Google Scholar]
- Bilesan, A.; Owlia, M.; Behzadipour, S.; Ogawa, S.; Tsujita, T.; Komizunai, S.; Konno, A. Marker-Based Motion Tracking Using Microsoft Kinect. IFAC-Pap. 2018, 51, 399–404. [Google Scholar] [CrossRef]
- Bilesan, A.; Behzadipour, S.; Tsujita, T.; Komizunai, S.; Konno, A. Markerless Human Motion Tracking Using Microsoft Kinect SDK and Inverse Kinematics. In Proceedings of the 2019 12th Asian Control Conference (ASCC), Kitakyushu, Japan, 9–12 June 2019; pp. 504–509. [Google Scholar]
- Guess, T.M.; Razu, S.; Jahandar, A.; Skubic, M.; Huo, Z. Comparison of 3D Joint Angles Measured With the Kinect 2.0 Skeletal Tracker Versus a Marker-Based Motion Capture System. J. Appl. Biomech. 2017, 33, 176–181. [Google Scholar] [CrossRef]
- Hughes, J.; Iida, F. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring. Sensors 2018, 18, 3822. [Google Scholar] [CrossRef]
- Tolvanen, J.; Hannu, J.; Jantunen, H. Stretchable and Washable Strain Sensor Based on Cracking Structure for Human Motion Monitoring. Sci. Rep. 2018, 8, 13241. [Google Scholar] [CrossRef]
- Agarwala, S.; Goh, G.L.; Dinh Le, T.-S.; An, J.; Peh, Z.K.; Yeong, W.Y.; Kim, Y.-J. Wearable Bandage-Based Strain Sensor for Home Healthcare: Combining 3D Aerosol Jet Printing and Laser Sintering. ACS Sens. 2019, 4, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Bötzel, K.; Marti, F.M.; Rodríguez, M.Á.C.; Plate, A.; Vicente, A.O. Gait Recording with Inertial Sensors—How to Determine Initial and Terminal Contact. J. Biomech. 2016, 49, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Routhier, F.; Duclos, N.C.; Lacroix, É.; Lettre, J.; Turcotte, E.; Hamel, N.; Michaud, F.; Duclos, C.; Archambault, P.S.; Bouyer, L.J. Clinicians’ Perspectives on Inertial Measurement Units in Clinical Practice. PLoS ONE 2020, 15, e0241922. [Google Scholar] [CrossRef] [PubMed]
- Hoareau, D.; Jodin, G.; Chantal, P.-A.; Bretin, S.; Prioux, J.; Razan, F. Synthetized Inertial Measurement Units (IMUs) to Evaluate the Placement of Wearable Sensors on Human Body for Motion Recognition. J. Eng. 2022, 2022, 536–543. [Google Scholar] [CrossRef]
- Alanen, A.; Räisänen, A.; Benson, L.; Pasanen, K. The Use of Inertial Measurement Units for Analyzing Change of Direction Movement in Sports: A Scoping Review. Int. J. Sport. Sci. Coach. 2021, 16, 1332–1353. [Google Scholar] [CrossRef]
- Homayounfar, S.Z.; Andrew, T.L. Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technol. 2020, 25, 9–24. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, N.; Xu, Q.; Dai, Y.; Wang, Z. Recent Advances in Flexible Tactile Sensors for Intelligent Systems. Sensors 2021, 21, 5392. [Google Scholar] [CrossRef]
- Yao, S.; Swetha, P.; Zhu, Y. Nanomaterial-Enabled Wearable Sensors for Healthcare. Adv. Healthc. Mater. 2018, 7, 1700889. [Google Scholar] [CrossRef]
- Zhao, T.; Li, T.; Chen, L.; Yuan, L.; Li, X.; Zhang, J. Highly Sensitive Flexible Piezoresistive Pressure Sensor Developed Using Biomimetically Textured Porous Materials. ACS Appl. Mater. Interfaces 2019, 11, 29466–29473. [Google Scholar] [CrossRef]
- Yao, S.; Yang, J.; Poblete, F.R.; Hu, X.; Zhu, Y. Multifunctional Electronic Textiles Using Silver Nanowire Composites. ACS Appl. Mater. Interfaces 2019, 11, 31028–31037. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Carreira, S.C.; Chen, Y.; Xiang, C.; Xu, L.; Zhang, B.; Chen, M.; Farrow, I.; Scarpa, F.; Rossiter, J. Stretchable Piezoelectric Sensing Systems for Self-Powered and Wireless Health Monitoring. Adv. Mater. Technol. 2019, 4, 1900100. [Google Scholar] [CrossRef] [Green Version]
- Allataifeh, A.; Al Ahmad, M. Simultaneous Piezoelectric Noninvasive Detection of Multiple Vital Signs. Sci. Rep. 2020, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric Biomaterials for Sensors and Actuators. Adv. Mater. 2019, 31, 1802084. [Google Scholar] [CrossRef] [PubMed]
- Stadlober, B.; Zirkl, M.; Irimia-Vladu, M. Route towards Sustainable Smart Sensors: Ferroelectric Polyvinylidene Fluoride-Based Materials and Their Integration in Flexible Electronics. Chem. Soc. Rev. 2019, 48, 1787–1825. [Google Scholar] [CrossRef] [PubMed]
- Maity, K.; Garain, S.; Henkel, K.; Schmeißer, D.; Mandal, D. Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor. ACS Appl. Polym. Mater. 2020, 2, 862–878. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, A.C. On the Origin of Contact-Electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Zhang, N.; Tao, C.; Fan, X.; Chen, J. Progress in Triboelectric Nanogenerators as Self-Powered Smart Sensors. J. Mater. Res. 2017, 32, 1628–1646. [Google Scholar] [CrossRef]
- Yi, F.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring. Adv. Funct. Mater. 2019, 29, 1808849. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, J.H.; Kim, J.K.; Jeong, U. Material Aspects of Triboelectric Energy Generation and Sensors. NPG Asia Mater. 2020, 12, 6. [Google Scholar] [CrossRef]
- Choi, W.; Yun, I.; Jeung, J.; Park, Y.S.; Cho, S.; Kim, D.W.; Kang, I.S.; Chung, Y.; Jeong, U. Stretchable Triboelectric Multimodal Tactile Interface Simultaneously Recognizing Various Dynamic Body Motions. Nano Energy 2019, 56, 347–356. [Google Scholar] [CrossRef]
- De Fazio, R.; De Vittorio, M.; Visconti, P. A BLE-Connected Piezoresistive and Inertial Chest Band for Remote Monitoring of the Respiratory Activity by an Android Application: Hardware Design and Software Optimization. Future Internet 2022, 14, 183. [Google Scholar] [CrossRef]
- Castañeda, J.J.; Ruiz-Olaya, A.F.; Lara-Herrera, C.N.; Roldán, F.Z. Knee Joint Angle Monitoring System Based on Inertial Measurement Units for Human Gait Analysis. In Proceedings of the VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, 26–28 October 2016; Torres, I., Bustamante, J., Sierra, D.A., Eds.; Springer: Singapore, 2017; pp. 690–693. [Google Scholar]
- Bavan, L.; Surmacz, K.; Beard, D.; Mellon, S.; Rees, J. Adherence Monitoring of Rehabilitation Exercise with Inertial Sensors: A Clinical Validation Study. Gait Posture 2019, 70, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [PubMed]
- De Fazio, R.; Stabile, M.; De Vittorio, M.; Velázquez, R.; Visconti, P. An Overview of Wearable Piezoresistive and Inertial Sensors for Respiration Rate Monitoring. Electronics 2021, 10, 2178. [Google Scholar] [CrossRef]
- Hughes, C.M.L.; Louie, A.; Sun, S.; Gordon-Murer, C.; Belay, G.J.; Baye, M.; Zhang, X. Development of a Post-Stroke Upper Limb Rehabilitation Wearable Sensor for Use in Sub-Saharan Africa: A Pilot Validation Study. Front. Bioeng. Biotechnol. 2019, 7, 322. [Google Scholar] [CrossRef]
- De Fazio, R.; De Vittorio, M.; Visconti, P. Innovative IoT Solutions and Wearable Sensing Systems for Monitoring Human Biophysical Parameters: A Review. Electronics 2021, 10, 1660. [Google Scholar] [CrossRef]
- McGrath, M.J.; Scanaill, C.N. Sensing and Sensor Fundamentals. In Sensor Technologies: Healthcare, Wellness, and Environmental Applications; McGrath, M.J., Scanaill, C.N., Eds.; Apress: Berkeley, CA, USA, 2013; pp. 15–50. ISBN 978-1-4302-6014-1. [Google Scholar]
- Wang, T.; Green, R.; Guldiken, R.; Wang, J.; Mohapatra, S.; Mohapatra, S.S. Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity. Sensors 2019, 19, 1749. [Google Scholar] [CrossRef]
- Koncar, V. Structural Health Monitoring of Processes Related to Composite Manufacturing. In Smart Textiles for In Situ Monitoring of Composites; Koncar, V., Ed.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2019; pp. 295–381. ISBN 978-0-08-102308-2. [Google Scholar]
- Keaton, J.R. Young’s Modulus. In Encyclopedia of Engineering Geology; Bobrowsky, P.T., Marker, B., Eds.; Encyclopedia of Earth Sciences Series; Springer International Publishing: Cham, Switzerland, 2018; pp. 955–956. ISBN 978-3-319-73568-9. [Google Scholar]
- Soloman, S. Sensors Handbook, 2nd ed.; McGraw Hill: Boston, MA, USA, 2009; ISBN 978-1-59693-307-1. [Google Scholar]
- Barhoum, A.; Altintas, Z. Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications; Elsevier Science: Amsterdam, The Netherlands, 2022; ISBN 978-0-323-90222-9. [Google Scholar]
- O’Reilly, M.; Duffin, J.; Ward, T.; Caulfield, B. Mobile App to Streamline the Development of Wearable Sensor-Based Exercise Biofeedback Systems: System Development and Evaluation. JMIR Rehabil. Assist. Technol. 2017, 4, e9. [Google Scholar] [CrossRef]
- Salehi, S.; Bleser, G.; Reiss, A.; Stricker, D. Body-IMU Autocalibration for Inertial Hip and Knee Joint Tracking. EAI Endorsed Trans. Pervasive Health Technol. 2015, 2, e3. [Google Scholar]
- Yao, S.; Vargas, L.; Hu, X.; Zhu, Y. A Novel Finger Kinematic Tracking Method Based on Skin-Like Wearable Strain Sensors. IEEE Sens. J. 2018, 18, 3010–3015. [Google Scholar] [CrossRef]
- Yang, G.; Deng, J.; Pang, G.; Zhang, H.; Li, J.; Deng, B.; Pang, Z.; Xu, J.; Jiang, M.; Liljeberg, P.; et al. An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Wu, J.; Huang, J.; Wang, Y.; Xing, K.; Xu, Q. Fuzzy PID Control of a Wearable Rehabilitation Robotic Hand Driven by Pneumatic Muscles. In Proceedings of the 2009 International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, 9–11 November 2009; pp. 408–413. [Google Scholar]
- Lipovský, R.; Ferreira, H.A. Hand Therapist: A Rehabilitation Approach Based on Wearable Technology and Video Gaming. In Proceedings of the 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), Porto, Portugal, 26–28 February 2015; pp. 1–2. [Google Scholar]
- Chen, T.; Lum, P.S. Hand Rehabilitation after Stroke Using a Wearable, High DOF, Spring Powered Exoskeleton. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 578–581. [Google Scholar]
- Li, G.; Cheng, L.; Gao, Z.; Xia, X.; Jiang, J. Development of an Untethered Adaptive Thumb Exoskeleton for Delicate Rehabilitation Assistance. IEEE Trans. Robot. 2022, 38, 3514–3529. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, B.; Wang, J.; Wu, Q.; Li, X.; Zhou, L.; Xiong, D. Wearable Intelligent Machine Learning Rehabilitation Assessment for Stroke Patients Compared with Clinician Assessment. J. Clin. Med. 2022, 11, 7467. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, Y.-N.; Yang, C.-Y.; Xu, T.; Harvey, R.L.; Zhang, L.-Q. Developing a Wearable Ankle Rehabilitation Robotic Device for In-Bed Acute Stroke Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, Z.; Cai, J. A Foot Pressure Sensor Based on Triboelectric Nanogenerator for Human Motion Monitoring. Microsyst. Technol. 2021, 27, 3507–3512. [Google Scholar] [CrossRef]
- Mao, Y.; Yue, W.; Zhao, T.; Shen, M.; Liu, B.; Chen, S. A Self-Powered Biosensor for Monitoring Maximal Lactate Steady State in Sport Training. Biosensors 2020, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xiao, P.; Lu, W.; Shi, J.; Zhang, L.; Liang, Y.; Pan, C.; Kuo, S.-W.; Chen, T. A Universal High Accuracy Wearable Pulse Monitoring System via High Sensitivity and Large Linearity Graphene Pressure Sensor. Nano Energy 2019, 59, 422–433. [Google Scholar] [CrossRef]
- Tao, L.-Q.; Zhang, K.-N.; Tian, H.; Liu, Y.; Wang, D.-Y.; Chen, Y.-Q.; Yang, Y.; Ren, T.-L. Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano 2017, 11, 8790–8795. [Google Scholar] [CrossRef]
- Li, Y.; Miao, X.; Niu, L.; Jiang, G.; Ma, P. Human Motion Recognition of Knitted Flexible Sensor in Walking Cycle. Sensors 2020, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Zhang, W.; Wang, Y.; Guan, R.; Liu, B.; Wang, X.; Sun, Z.; Xing, L.; Chen, S.; Xue, X. Self-Powered Wearable Athletics Monitoring Nanodevice Based on ZnO Nanowire Piezoelectric-Biosensing Unit Arrays. Sci. Adv. Mater. 2019, 11, 351–359. [Google Scholar] [CrossRef]
- Coyle, S.; Morris, D.; Lau, K.-T.; Diamond, D.; Moyna, N. Textile-Based Wearable Sensors for Assisting Sports Performance. In Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 307–311. [Google Scholar]
- Tesconi, M.; Tognetti, A.; Scilingo, E.P.; Zupone, G.; Carbonaro, N.; De Rossi, D.; Castellini, E.; Marella, M. Wearable Sensorized System for Analyzing the Lower Limb Movement during Rowing Activity. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007; pp. 2793–2796. [Google Scholar]
- University of Idaho University of Idaho—Physical Rehabilitation Movements Data Set (UI-PRMD). Available online: https://webpages.uidaho.edu/ui-prmd/ (accessed on 1 February 2023).
- Capecci, M.; Ceravolo, M.G.; Ferracuti, F.; Iarlori, S.; Monteriu, A.; Romeo, L.; Verdini, F. The KIMORE Dataset: KInematic Assessment of MOvement and Clinical Scores for Remote Monitoring of Physical REhabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1436–1448. [Google Scholar] [CrossRef]
- Kolykhalova, K.; Camurri, A.; Völpe, G.; Sanguineti, M.; Puppo, E.; Niewiadomski, R. A Multimodal Dataset for the Analysis of Movement Qualities in Karate Martial Art. In Proceedings of the 2015 7th International Conference on Intelligent Technologies for Interactive Entertainment (INTETAIN), Turin, Italy, 10–12 June 2015; pp. 74–78. [Google Scholar]
- UCI Machine Learning Repository: Daily and Sports Activities Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities (accessed on 1 February 2023).
- Reyes-Ortiz, J.L.; Anguita, D.; Ghio, A.; Oneto, L.; Parra, X. Human Activity Recognition Using Smartphones Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones (accessed on 1 February 2023).
- Ghorbani, S.; Mahdaviani, K.; Thaler, A.; Kording, K.; Cook, D.J.; Blohm, G.; Troje, N.F. MoVi: A Large Multipurpose Motion and Video Dataset. PLoS ONE 2021, 16, e0253157. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Purdon, P.L.; Peng, C.-K.; Ladin, Z.; Wei, J.Y.; Goldberger, A.L. Gait in Aging and Disease Database. Available online: https://archive.physionet.org/physiobank/database/gaitdb/ (accessed on 1 February 2023).
- Isaac, E.R.H.P.; Elias, S.; Rajagopalan, S.; Easwarakumar, K.S. Trait of Gait: A Survey on Gait Biometrics. arXiv 2019, arXiv:1903.10744. [Google Scholar]
- Prakash, C.; Kumar, R.; Mittal, N. Recent Developments in Human Gait Research: Parameters, Approaches, Applications, Machine Learning Techniques, Datasets and Challenges. Artif. Intell. Rev. 2018, 49, 1–40. [Google Scholar] [CrossRef]
- do Nascimento, L.M.S.; Bonfati, L.V.; Freitas, M.L.B.; Mendes Junior, J.J.A.; Siqueira, H.V.; Stevan, S.L. Sensors and Systems for Physical Rehabilitation and Health Monitoring—A Review. Sensors 2020, 20, 4063. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A Review of Wearable Sensors and Systems with Application in Rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef]
- Li, R.T.; Kling, S.R.; Salata, M.J.; Cupp, S.A.; Sheehan, J.; Voos, J.E. Wearable Performance Devices in Sports Medicine. Sport. Health 2016, 8, 74–78. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Wen, N.; Xu, S.; Huang, H.; Cong, T.; Zhao, Y.; Fan, Z.; Liu, K.; Pan, L. All-Fabric-Based Multifunctional Textile Sensor for Detection and Discrimination of Humidity, Temperature, and Strain Stimuli. J. Mater. Chem. C 2021, 9, 13789–13798. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Wang, Y.; Hirtz, T.; Guo, Z.; Qiao, Y.; Cui, T.; Tian, H.; Yang, Y.; Ren, T.-L. Graphene-Based Multifunctional Textile for Sensing and Actuating. ACS Nano 2021, 15, 17738–17747. [Google Scholar] [CrossRef] [PubMed]
- Perovich, L.; Mothersill, P.; Farah, J.B. Awakened Apparel: Embedded Soft Actuators for Expressive Fashion and Functional Garments. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, Munich, Germany, 16–19 February 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 77–80. [Google Scholar]
- Tong, Y.; Kucukdeger, E.; Halper, J.; Cesewski, E.; Karakozoff, E.; Haring, A.P.; McIlvain, D.; Singh, M.; Khandelwal, N.; Meholic, A.; et al. Low-Cost Sensor-Integrated 3D-Printed Personalized Prosthetic Hands for Children with Amniotic Band Syndrome: A Case Study in Sensing Pressure Distribution on an Anatomical Human-Machine Interface (AHMI) Using 3D-Printed Conformal Electrode Arrays. PLoS ONE 2019, 14, e0214120. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Shim, H.R.; Na, Y.; Kang, K.S.; Jeon, Y.; Choi, S.; Jeong, E.G.; Park, Y.C.; Cho, H.-E.; Lee, J.; et al. Foldable and Washable Textile-Based OLEDs with a Multi-Functional near-Room-Temperature Encapsulation Layer for Smart e-Textiles. Npj Flex. Electron. 2021, 5, 15. [Google Scholar] [CrossRef]
Symbol | Representation |
---|---|
Shoulder abduction/adduction | |
Shoulder horizontal abduction/adduction | |
Shoulder internal/external rotation | |
Wrist flexion/extension | |
Wrist radial deviation/ulnar deviation | |
Forearm pronation/supination | |
Elbow flexion/extension | |
Ankle initial contact angle—frontal plane | |
Ankle initial contact angle—sagittal plane | |
Ankle maximum—frontal plane | |
Ankle maximum angle—sagittal plane | |
Knee initial contact angle—frontal plane | |
Knee initial contact angle—sagittal plane | |
Knee maximum—frontal plane | |
Knee maximum angle—sagittal plane |
Rehabilitation Parameters | Sports Activity Parameters |
---|---|
Joint bending (angle or ROM) (A) [18,21,22,24,25,26,27,28,29,32,39,40,41,42,43,44,50,53,54,55,56,57,58,59,60] (*) | Joint bending (angle or ROM) (A) [18,21,22,24,25,26,27,28,29,32,39,40,41,42,43,44,50,53,54,55,56,57,58,59,60] (*) |
Joint rotation (B) [18,21,24] (*) | Joint rotation (B) [18,21,24] (*) |
Neck muscle vibration (frequency and pattern) [22,27,28,29,30,32,39,42,53] | Jumping (distance and peak acceleration) [39,44,50,55] |
Heart parameters (HR—heart rate, HRV—heart rate variability, blood pressure) [21,27,28,30,42,56] (*) | Heart parameters (HR—heart rate, HRV—heart rate variability, blood pressure) [21,27,28,30,42,56] (*) |
Breathing parameters (RR—respiration rate, inhalation/exhalation times, flow rate) [21,29,30,31,32,53,61] (*) | Breathing parameters (RR—respiration rate, inhalation/exhalation times, flow rate) [21,29,30,31,32,53,61] (*) |
Swallowing (interval and frequency) [21,33,34] | Hit acceleration [47] |
Chewing (duration and frequency) [21] | Hit pressure [40,43,46,47] |
Movement response time (C) [47] (*) | Movement response time (C) [47] (*) |
Movement trajectories [47] (*) | Movement trajectories [47] (*) |
Walking (speed and stance time and pressure) [22,29,39,41,43,44,50,55,62] (*) | Walking (speed and stance time and pressure) [22,29,39,41,43,44,50,55,62] (*) |
Plantar pressure distribution [50,62,63] (*) | Plantar pressure distribution [50,62,63] (*) |
Fatigue [64] | |
Running (speed, pace, acceleration) [22,39,41,43,45,50,55,64] | |
(a) | (b) |
Transduction Technology | Active/Passive | Strengths | Drawbacks | Body Area |
---|---|---|---|---|
Inertial | Passive |
|
| Knee [20,54,95], elbow [96,97], chest [97,98], wrist [97,99], shoulder [97], head [97], throat [100] |
Piezoresistive | Passive |
|
| Foot [62], wrist [27,30,44,56,60], finger [27,32,44,56,60], throat [27,30,32], chest [31,32], elbow [32,44,60], knee [25,32,44,60], neck [32], nose [30], cheek [27,30], ankle [44], abdomen [60] |
Capacitive | Passive |
|
| Finger [28,29,53,55], throat [28,29,53], wrist [28,57], cheek [29], knee [29,55], elbow [29,57], foot [29], belly [53,61], head [46] |
Piezoelectric | Active |
|
| Wrist [21,24,39,87], throat [21,22,25,28,39,87], cheek [21], nose [21,87], shoulder [24], forearm [24], elbow [22,24,39,42], foot [22], knee [39,64], finger [30,33,79], ankle [64] |
Triboelectric | Active |
|
| Tongue [33], finger [50], wrist [26,50,91], elbow [26,41,50,58], foot [41,50,91], knee [26,41,91], belly [91], ankle [26], shoulder [26], spine [26] |
Reference | Sensing Technology | Materials | Sensitivity | Range of Detection | Body Area of Application | Measured Parameters | Response Time | Transmission Technology |
---|---|---|---|---|---|---|---|---|
Ianculescu et al. [54] | IMU | N.A. (*) | N.A. (*) | N.A. (*) | Knee | Knee bending angle | N.A. (*) | Wireless |
He et al. [29] | Capacitive | MXene (Ti3C2Tx)/AgNWs | 0.01–2.04 kPa–1 (A) | 0–2 kPa | Throat, cheek, finger, knee, elbow, foot | Voice recognition, air-blowing intensity, joint bending angle, walking frequency, and weight pressure | ms | Wired |
Chen et al. [53] | Capacitive | Nickel-coated fabric | N.A. (*) | N.A. (*) | Belly, throat, finger | Breathing frequency and intensity, voice recognition, finger bending angle | 5–50 µs | Wired |
Lei et al. [28] | Capacitive | ACC/PAA/alginate hydrogel | 0.17 kPa–1 (A) | 0–1 kPa | Finger, throat, wrist | Finger bending angle, voice recognition, heartbeat | N.A. (*) | Wired |
Park et al. [61] | Capacitive | PDMS AgNW CFs | 0.015 kPa–1 (A) | 10–50 kPa | Belly | Breathing frequency and intensity | N.A. (*) | Wired |
Yao e Zhu [55] | Capacitive | AgNW/PDMS Ecoflex | 1.62 MPa–1 (A) below 500 kPa | Up to 1.2 MPa | Knee, finger | Finger bending and knee bending frequency | 40 ms | Wired |
Sheng et al. [57] | Capacitive | GaInSn | N.A. (*) | Stretchability up to 250% | Elbow, wrist | Wrist and elbow bend angles | <10 ms | Wireless |
Yun et al. [33] | Triboelectric | PET/Cu/PTFE | 47 mV/kPa | 20–100 kPa | Tongue | Pressure and frequency of tongue movements | N.A. (*) | Bluetooth |
Tan et al. [62] | Piezoresistive | rGO–Ag | 3.90 kPa–1 (B) | 0–100 kPa | Foot | Pressure distribution on the foot sole | 170 ms | Wired |
Tognetti et al. [25] | Piezoresistive | Carbon-coated PA and lycra elastic yarns | (Angular sensitivity) 960 Ω/° (C) | N.A. (*) | Knee | Knee bending angle | N.A. | Wired |
Ge et al. [56] | Piezoresistive | PDMS AgNW | 4.29 N–1 (D) | 0–2 N | Wrist, finger | Heartbeat and finger bending angle | 8 ms | Wired |
Zhu et al. [32] | Piezoresistive | TPU/CNT–CNC | GF = 321 | Stretchability > 500% | Throat, finger, elbow, knee, neck, chest | Voice recognition and finger, elbow, knee, and neck bending degree | N.A. (*) | Wired |
Dan et al. [30] | Piezoresistive | PDMS/AgNW | 14.1 kPa–1, 4.8 kPa–1, 1.84 kPa–1 (B) | (0–3.5) kPa, (3.5–10) kPa (10–40) kPa | Wrist, nose, cheek, throat | Heartbeat, exhalation frequency, facial expression signals, and voice recognition | 47 ms | Wired |
Kim et al. [27] | Piezoresistive | PUD/CNTs | 0.31 kPa–1, 0.1 kPa–1, 0.03 kPa–1 (E) | <1000 Pa, (1–20) kPa, >20 kPa | Wrist, throat, finger, cheek | Arterial and jugular heartbeat, finger bending angle, cheek bulging frequency, voice recognition | 36.7 ms | Wired |
Lu et al. [44] | Piezoresistive | PANI/PAAMPSA | GF = 1.7 (100% strain) GF = 14.52 (1500% strain) | Stretchability up to 1935% | Wrist, elbow, finger, ankle, knee | Finger, elbow, wrist, and knee bending angle, frequency of walking and jumping | N.A. (*) | Wired |
Kim et al. [24] | Piezoelectric | PVDF–elastic threads | N.A. (*) | 0–5 N | Shoulder, forearm, elbow, wrist | Bending and rotation angle of shoulder, wrist, and forearm | N.A. (*) | Bluetooth |
Wang et al. [21] | Piezoelectric | (P(VDF–TrFE)/MWCNT) | 540 mV/N | 0.5–5.0 N | Wrist, throat, cheek, nose | Heartbeat, intensity and frequency of breathing, swallowing and chewing | N.A. (*) | Wired |
Natta et al. [34] | Piezoelectric | AlN/Mo on Kapton | 0.025 V/N | 10–50 kPa | Throat | Frequency, duration, and latency of swallowing | 15 ms | Wireless |
Reference | Sensing Technology | Materials | Sensitivity | Range of Detection | Body Area of Application | Measured Parameters | Response Time | Transmission Technology |
---|---|---|---|---|---|---|---|---|
Masihi et al. [46] | Capacitive | PDMS | 0.3 kPa–1 3.2 MPa–1 (A) | <50 Pa 0.2–1 MPa | Head | Head pressure distribution | 115 ms | Wired |
Li et al. [41] | Triboelectric | PDMS–elastic resin | N.A. (*) | 2–260 N | Elbow, knee, foot | Knee and elbow bending angles, pressure, and frequency of steps in running and walking | N.A. (*) | Wired |
Yang et al. [50] | Triboelectric | TPU/silicone rubber/conductive fabric | 0.054 V/kPa–1 | 2–200 kPa | Finger, wrist, elbow, foot | Finger, wrist, and elbow bending angles; plantar pressure distribution during walking, running tiptoe, and jumping | N.A. (*) | Wired |
Guo et al. [22] | Piezoelectric | PVDF/BaTiO3 (NW) | 0.017 kPa–1 (B) | 1–40 kPa | Foot, elbow, throat | Elbow bending angle, voice recognition, pressure, and frequency of steps in running and walking | 290 ms | Bluetooth |
Zhao et al. [39] | Piezoelectric | PVDF/Ag/PET | N.A. (*) | N.A. (*) | Elbow, knee, wrist, finger, throat | Vocal recognition; elbow, wrist, finger, and knee bending angle; walking, jumping, and running frequency | N.A. (*) | Bluetooth |
Li et al. [64] | Piezoelectric | (PVDF–HFP)/ZnO | 1.92 V/kPa–1 | 0.02–0.5 N | Knee, ankle | Frequency and degree of the knee and ankle bending during running | 20 ms | Bluetooth |
Liu et al. [42] | Piezoelectric | PVDF | N.A. (*) | N.A. (*) | Throat, elbow, finger | Vocal recognition, finger and elbow bending angles | N.A. (*) | Wireless |
Saponara et al. [47] | IMU, strain gauge, electro-goniometer | Aluminum | N.A. (*) | Hundreds of g (gravity force) | Hip, knee, elbow | Speed, acceleration, pressure, trajectory, and response time of punch and kick | N.A. (*) | Bluetooth |
Ma et al. [40] | Resistive–capacitive | GO–CNT/PU e-textile | 0.1124 kPa–1, 0.0283 kPa–1, 0.0021 kPa–1 (A) | 0–9 kPa, 9–37 kPa, 37–110 kPa | Chest, knee | Hit pressure distribution and knee bending angles | 120 ms | Wired |
Zhu et al. [18] | Triboelectric/ piezoresistive | PTFE/latex–PVDF/hydrogel | N.A. (*) | N.A. (*) | Wrist | Wrist bending and rotation angles | N.A. (*) | Bluetooth |
Mariello et al. [43] | Triboelectric/ piezoelectric | PDMS/ Ecoflex–AlN/Mo | 59.4 mV/kPa–1 160 mV/kPa–1, 3.7 mV/kPa–1 | 0–50 kPa, 50–120 kPa, 120–400 kPa | Foot, elbow, wrist, finger, ankle, knee, neck | Hit pressure on human skin; walking and running speed; finger gestures; ankle, elbow, neck, wrist, and knee bending | N.A. (*) | Wired |
Dataset | Provided by | No of Participants | Parameters | Approach | MoCap System Details | Suggested Application |
---|---|---|---|---|---|---|
UI–PRMD [125] | University of Idaho | 10 | Locations and angular orientations of the body joints | Vision-based | Vicon optical trackers Kinect cameras | Monitoring rehabilitation exercises |
KIMORE [126] | Marche Polytechnic University | 78 | Joint locations | Vision-based | Kinect cameras | Detection motor dysfunction |
M. Capecci et al. [127] | Marche Polytechnic University | 7 | Joint locations | Vision-based | Kinect v1 | Evaluation of karate moves |
Daily and sports activities data set [128] | Bilkent University | 8 | Inertial data | Sensor-based | Inertial sensors (25 Hz sampling frequency) | Activity recognition |
Human Activity recognition using smartphones data set [129] | University of Genoa | 30 | Inertial data | Sensor-based | Smartphone (Samsung Galaxy S II) | Activity recognition |
MoVi dataset [130] | York University | 90 | Camera images, joint locations, inertial data | Vision-based Sensor-based | 15 cameras (Qualisys Oqus 300 and 310) 2 stationary cameras (RGB Grasshopper2) 2 hand-held cameras (iPhone 7) 17 IMU sensors (Noitom Neuron Edition V2) | Motion recognition |
Gait in aging and disease database [131] | PhysioBank | 15 | Stride interval | Sensor-based | Force-sensitive resistors | Normal gait and Parkinson’s disease analysis |
MIT database [132] | MIT | 24 | View, time | Vision-based | Sony Handycam | Gait recognition |
Georgia Tech [133] | Georgia Tech | 20 | View, time, distance | Vision-based | - | Gait recognition |
References | Limitations of Similar Review Papers | Advantages of our Review Paper |
---|---|---|
L. do Nascimento et al. [134] |
|
|
S. Patel et al. [135] |
|
|
R. T. Li et al. [136] |
|
|
D. R. Seshadri et al. [10] |
|
|
Y. Zhao and Y. You [9] |
|
|
S. Bahadori et al. [11] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Fazio, R.; Mastronardi, V.M.; De Vittorio, M.; Visconti, P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors 2023, 23, 1856. https://doi.org/10.3390/s23041856
De Fazio R, Mastronardi VM, De Vittorio M, Visconti P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors. 2023; 23(4):1856. https://doi.org/10.3390/s23041856
Chicago/Turabian StyleDe Fazio, Roberto, Vincenzo Mariano Mastronardi, Massimo De Vittorio, and Paolo Visconti. 2023. "Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview" Sensors 23, no. 4: 1856. https://doi.org/10.3390/s23041856
APA StyleDe Fazio, R., Mastronardi, V. M., De Vittorio, M., & Visconti, P. (2023). Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors, 23(4), 1856. https://doi.org/10.3390/s23041856