Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests
"> Figure 1
<p>Boundary of the ‘Badajoz Province’ forest study site (blue line) and the locations of GEDI shots inside the different Mediterranean forest types. The red rectangles zooms represent the distribution of GEDI orbital tracks across the different Forest Ecosystems.</p> "> Figure 2
<p>Scatterplots between ALS and GEDI-derived metrics for <span class="html-italic">p</span>98<span class="html-italic">rh98</span> and mean difference between ALS and GEDI metrics by <span class="html-italic">CC</span><sub>ALS</sub> (%): (<b>a</b>,<b>b</b>) <span class="html-italic">Dehesas</span>; (<b>c</b>,<b>d</b>) <span class="html-italic">Encinares</span>, and (<b>e</b>,<b>f</b>) <span class="html-italic">Alcornocales</span>. The red solid line represents the 1:1 relationship in the scatterplots. Mean values of the differences between <span class="html-italic">rh</span>98–<span class="html-italic">p</span>98 (triangle). The dashed red line represents y = 0 in boxplots.</p> "> Figure 2 Cont.
<p>Scatterplots between ALS and GEDI-derived metrics for <span class="html-italic">p</span>98<span class="html-italic">rh98</span> and mean difference between ALS and GEDI metrics by <span class="html-italic">CC</span><sub>ALS</sub> (%): (<b>a</b>,<b>b</b>) <span class="html-italic">Dehesas</span>; (<b>c</b>,<b>d</b>) <span class="html-italic">Encinares</span>, and (<b>e</b>,<b>f</b>) <span class="html-italic">Alcornocales</span>. The red solid line represents the 1:1 relationship in the scatterplots. Mean values of the differences between <span class="html-italic">rh</span>98–<span class="html-italic">p</span>98 (triangle). The dashed red line represents y = 0 in boxplots.</p> "> Figure 3
<p>Scatterplots between ALS and GEDI-derived metrics for <span class="html-italic">p</span>98–<span class="html-italic">rh98</span> and mean difference between ALS and GEDI metrics by <span class="html-italic">CC</span><sub>ALS</sub> (%): (<b>a</b>,<b>b</b>) <span class="html-italic">Pinaster</span>; (<b>c</b>,<b>d</b>) <span class="html-italic">Pinea</span>. The red solid line represents the 1:1 relationship in the scatterplots. Mean values of the differences between <span class="html-italic">rh</span>98–<span class="html-italic">p</span>98 (triangle). The dashed red line represents y = 0 in boxplots.</p> "> Figure 3 Cont.
<p>Scatterplots between ALS and GEDI-derived metrics for <span class="html-italic">p</span>98–<span class="html-italic">rh98</span> and mean difference between ALS and GEDI metrics by <span class="html-italic">CC</span><sub>ALS</sub> (%): (<b>a</b>,<b>b</b>) <span class="html-italic">Pinaster</span>; (<b>c</b>,<b>d</b>) <span class="html-italic">Pinea</span>. The red solid line represents the 1:1 relationship in the scatterplots. Mean values of the differences between <span class="html-italic">rh</span>98–<span class="html-italic">p</span>98 (triangle). The dashed red line represents y = 0 in boxplots.</p> "> Figure 4
<p>Scatterplots of ALS observed vs. GEDI-estimated at GEDI footprint level values of AGB for the best model in terms of rBias and associated histogram: (<b>a</b>,<b>b</b>) <span class="html-italic">Dehesas</span>; (<b>c</b>,<b>d</b>) <span class="html-italic">Encinares</span>; (<b>e</b>,<b>f</b>) <span class="html-italic">Alcornocales;</span> (<b>g</b>,<b>h</b>) <span class="html-italic">Pinaster</span>; (<b>i</b>,<b>j</b>) <span class="html-italic">Pinea</span>, canopy. The red solid line represents the 1:1 relationship.</p> "> Figure 4 Cont.
<p>Scatterplots of ALS observed vs. GEDI-estimated at GEDI footprint level values of AGB for the best model in terms of rBias and associated histogram: (<b>a</b>,<b>b</b>) <span class="html-italic">Dehesas</span>; (<b>c</b>,<b>d</b>) <span class="html-italic">Encinares</span>; (<b>e</b>,<b>f</b>) <span class="html-italic">Alcornocales;</span> (<b>g</b>,<b>h</b>) <span class="html-italic">Pinaster</span>; (<b>i</b>,<b>j</b>) <span class="html-italic">Pinea</span>, canopy. The red solid line represents the 1:1 relationship.</p> "> Figure 4 Cont.
<p>Scatterplots of ALS observed vs. GEDI-estimated at GEDI footprint level values of AGB for the best model in terms of rBias and associated histogram: (<b>a</b>,<b>b</b>) <span class="html-italic">Dehesas</span>; (<b>c</b>,<b>d</b>) <span class="html-italic">Encinares</span>; (<b>e</b>,<b>f</b>) <span class="html-italic">Alcornocales;</span> (<b>g</b>,<b>h</b>) <span class="html-italic">Pinaster</span>; (<b>i</b>,<b>j</b>) <span class="html-italic">Pinea</span>, canopy. The red solid line represents the 1:1 relationship.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Airborne Laser Scanning Acquisition and Processing
2.3. GEDI Data Adquisition and Processing
2.4. Field Data Adquisition
2.5. ALS-Derived AGB Models
2.6. GEDI-Derived AGB Models
3. Results
3.1. GEDI-ALS Metrics Accuracy
3.2. ALS AGB-Derived Models
3.3. Performance of GEDI AGB-Derived Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Cross One-Out Validation | |||||
---|---|---|---|---|---|
Forest Type | n | Model | Mefc | RMSE (Mg/ha)C | rRMSE(%)C |
Dehesas | 239 | 0.24 | 20.93 | 50.2 | |
Encinares | 90 | 0.54 | 15.32 | 55.87 | |
Alconocales | 82 | 0.80 | 10.39 | 38.58 | |
Pinaster | 45 | 0.69 | 27.37 | 36.71 | |
Pinea | 52 | 0.81 | 15.65 | 30.74 |
Cross One-Out Validation | |||||
---|---|---|---|---|---|
Forest Type | n | Model | Mefc | RMSE(Mg/ha)C | rRMSE(%)C |
Dehesas | 38,983 | 0.30 | 15.38 | 38.17 | |
Encinares | 15,958 | 0.30 | 14.41 | 62.30 | |
Alconocales | 3026 | 0.37 | 22.10 | 84.91 | |
Pinaster | 1534 | 0.37 | 32.22 | 48.27 | |
Pinea | 3634 | 0.45 | 28.41 | 64.07 |
References
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of Global Forest Area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Martín-Ortega, P.; Picard, N.; García-Montero, L.G.; Del Rio, S.; Penas, A.; Marchetti, M.; Lasserre, B.; Özdemir, E.; García-Robredo, F.; Pascual, C. Importance Des Forêts Méditerranéennes. In Etat des Forêts Méditerranéennes 2018; Bourlion, N., Garavaglia, V., Picard, N., Eds.; FAO: Rome, Italy; Plan Bleu: Marseille, France, 2020; pp. 33–54. [Google Scholar]
- Guerra-Hernández, J.; Aviles, C.; Botequim, B.; Jurado-Varela, A.; Sandoval, V.; Robla-González, E. Expansión Continua Del IFN4 de Extremadura y Canarias Mediante Técnicas LiDAR. In Teledetección: Hacia una Visión Global del Cambio Climático; Universidad de Valladolid: Valladolid, Spain, 2019; pp. 467–470. [Google Scholar]
- Pascual, A.; Guerra-Hernández, J.; Cosenza, D.N.; Sandoval, V. The Role of Improved Ground Positioning and Forest Structural Complexity When Performing Forest Inventory Using Airborne Laser Scanning. Remote Sens. 2020, 12, 413. [Google Scholar] [CrossRef] [Green Version]
- Espejo, A.; Federici, S.; Green, C.; Amuchastegui, N.; d’Annunzio, R.; Balzter, H.; Bholanath, P.; Brack, C.; Brewer, C.; Birigazzi, L. Integration of Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative, 3rd ed.; U.N. Food and Agriculture Organization: Rome, Italy, 2020; 300p. [Google Scholar]
- Álvarez-González, J.G.; Cañellas, I.; Alberdi, I.; Gadow, K.V.; Ruiz-González, A.D. National Forest Inventory and Forest Observational Studies in Spain: Applications to Forest Modeling. For. Ecol. Manag. 2014, 316, 54–64. [Google Scholar] [CrossRef]
- Tomppo, E.; Haakana, M.; Katila, M.; Peräsaari, J. Multi-Source National Forest Inventory: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 18. [Google Scholar]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC National Greenhouse Gas Inventories Programme: Hayama, Kanagawa, Japan, 2006. [Google Scholar]
- Kumar, L.; Mutanga, O. Remote Sensing of Above-Ground Biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Cosenza, D.N.; Rodriguez, L.C.E.; Silva, M.; Tomé, M.; Díaz-Varela, R.A.; González-Ferreiro, E. Comparison of ALS-and UAV (SfM)-Derived High-Density Point Clouds for Individual Tree Detection in Eucalyptus Plantations. Int. J. Remote Sens. 2018, 39, 5211–5235. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Arellano-Pérez, S.; González-Ferreiro, E.; Pascual, A.; Sandoval Altelarrea, V.; Ruiz-González, A.D.; Álvarez-González, J.G. Developing a Site Index Model for P. Pinaster Stands in NW Spain by Combining Bi-Temporal ALS Data and Environmental Data. For. Ecol. Manag. 2021, 481, 118690. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Görgens, E.B.; García-Gutiérrez, J.; Rodriguez, L.C.E.; Tomé, M.; González-Ferreiro, E. Comparison of ALS Based Models for Estimating Aboveground Biomass in Three Types of Mediterranean Forest. Eur. J. Remote Sens. 2016, 49, 185–204. [Google Scholar] [CrossRef]
- Botequim, B.; Fernandes, P.M.; Borges, J.G.; González-Ferreiro, E.; Guerra-Hernández, J. Improving Silvicultural Practices for Mediterranean Forests through Fire Behaviour Modelling Using LiDAR-Derived Canopy Fuel Characteristics. Int. J. Wildland Fire 2019, 28, 823–839. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning. Remote Sens. 2019, 11, 1503. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sens. 2020, 12, 1824. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W. The Ice, Cloud, and Land Elevation Satellite—2 Mission: A Global Geolocated Photon Product Derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; Crowther, T.W. The Importance of Consistent Global Forest Aboveground Biomass Product Validation. Surv. Geophys. 2019, 40, 979–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncanson, L.; Neuenschwander, A.; Hancock, S.; Thomas, N.; Fatoyinbo, T.; Simard, M.; Silva, C.A.; Armston, J.; Luthcke, S.B.; Hofton, M. Biomass Estimation from Simulated GEDI, ICESat-2 and NISAR across Environmental Gradients in Sonoma County, California. Remote Sens. Environ. 2020, 242, 111779. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J.; et al. Fusing Simulated GEDI, ICESat-2 and NISAR Data for Regional Aboveground Biomass Mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- Montesano, P.M.; Rosette, J.; Sun, G.; North, P.; Nelson, R.F.; Dubayah, R.O.; Ranson, K.J.; Kharuk, V. The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns across a Boreal Forest Gradient. Remote Sens. Environ. 2015, 158, 95–109. [Google Scholar] [CrossRef]
- Pascual, A.; Guerra-Hernández, J.; Cosenza, D.N.; Sandoval-Altelarrea, V. Using Enhanced Data Co-Registration to Update Spanish National Forest Inventories (NFI) and to Reduce Training Data under LiDAR-Assisted Inference. Int. J. Remote Sens. 2021, 42, 126–147. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-Resolution Mapping of Forest Canopy Height Using Machine Learning by Coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Rishmawi, K.; Huang, C.; Zhan, X. Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data. Remote Sens. 2021, 13, 442. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Pascual, A. Using GEDI Lidar Data and Airborne Laser Scanning to Assess Height Growth Dynamics in Fast-Growing Species: A Showcase in Spain. For. Ecosyst. 2021, 8, 14. [Google Scholar] [CrossRef]
- Lang, N.; Kalischek, N.; Armston, J.; Schindler, K.; Dubayah, R.; Wegner, J.D. Global Canopy Height Estimation with GEDI LIDAR Waveforms and Bayesian Deep Learning. arXiv 2021, arXiv:210303975. [Google Scholar]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat-2 Terrain and Canopy Heights in Boreal Forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; Version 3.60+; USDA Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2019.
- Isenburg, M. LAStools—Efficient Tools for LiDAR Processing, Version 200216; 2020. Available online: http://lastools.org (accessed on 15 April 2020).
- Næsset, E. Predicting Forest Stand Characteristics with Airborne Scanning Laser Using a Practical Two-Stage Procedure and Field Data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Dubayah, R.; Hofton, M.; Blair, J.B.; Armston, J.; Tang, H. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V001 [Data Set]. 2020. NASA EOSDIS Land Processes DAAC. Available online: https://search.earthdata.nasa.gov/search?q=C1656766463-LPDAAC_ECS (accessed on 1 June 2020).
- Dubayah, R.; Hofton, M.; Blair, J.B.; Armston, J.; Tang, H. GEDI L2B GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V001 [Data Set]. 2020. NASA EOSDIS Land Processes DAAC. Available online: https://search.earthdata.nasa.gov/search?q=C1656767133-LPDAAC_ECS (accessed on 1 June 2020).
- Silva, C.A. rGEDI: NASA’s Global Ecosystem Dynamics Investigation (GEDI) Data Visualization and Processing. R Package. 2020. Available online: https://CRAN.R-project.org/package=rGEDI (accessed on 15 August 2020).
- R Core Team. R: A Language and Environment for Statistical Computing, version 3.6.1; R Foundation Project for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- MacArthur, R.H.; Horn, H.S. Foliage Profile by Vertical Measurements. Ecology 1969, 50, 802–804. [Google Scholar] [CrossRef] [Green Version]
- Lumley, T.; Miller, A. Leaps: Regression Subset Selection. R Package. 2017. Available online: https://CRAN.R-Project.Org/Package=leaps (accessed on 15 August 2020).
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 571. [Google Scholar]
- Li, Y.; Andersen, H.-E.; McGaughey, R. A Comparison of Statistical Methods for Estimating Forest Biomass from Light Detection and Ranging Data. West. J. Appl. For. 2008, 23, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A Universal Airborne LiDAR Approach for Tropical Forest Carbon Mapping. Oecologia 2012, 168, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, M.; Durrieu, S.; Fournier, R.A.; Renaud, J.-P. Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- Silva, C.A.; Saatchi, S.; Garcia, M.; Labriere, N.; Klauberg, C.; Ferraz, A.; Meyer, V.; Jeffery, K.J.; Abernethy, K.; White, L. Comparison of Small-and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study from Central Gabon. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3512–3526. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Saarela, S.; Armston, J.; Ståhl, G.; Dubayah, R. Forest Biomass Estimation over Three Distinct Forest Types Using TanDEM-X InSAR Data and Simulated GEDI Lidar Data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Hancock, S.; Armston, J.; Hofton, M.; Sun, X.; Tang, H.; Duncanson, L.I.; Kellner, J.R.; Dubayah, R. The GEDI Simulator: A Large-footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth Space Sci. 2019, 6, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating Aboveground Biomass and Forest Canopy Cover with Simulated ICESat-2 Data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Ni-Meister, W.; Jupp, D.L.; Dubayah, R. Modeling Lidar Waveforms in Heterogeneous and Discrete Canopies. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1943–1958. [Google Scholar] [CrossRef] [Green Version]
- Rosen, P.; Hensley, S.; Shaffer, S.; Edelstein, W.; Kim, Y.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, R. The NASA-ISRO SAR (NISAR) Mission Dual-Band Radar Instrument Preliminary Design. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3832–3835. [Google Scholar]
- Quegan, S.; Le Toan, T.; Chave, J.; Dall, J.; Exbrayat, J.-F.; Minh, D.H.T.; Lomas, M.; D’Alessandro, M.M.; Paillou, P.; Papathanassiou, K. The European Space Agency BIOMASS Mission: Measuring Forest above-Ground Biomass from Space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef] [Green Version]
Variables | Description |
---|---|
Height metrics: (height_cutoff = 2) | |
hmean | mean |
qav | quadratic mean height |
hstd | standard deviation |
hmax, hmin | maximum and minimum |
hSkw | skewness |
hKurt | kurtosis |
CRR | canopy relief ratio ((mean heightmin height)/(max height- min height)) |
p01, p10, …… p99 | 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th percentiles |
Canopy cover metrics (cover_cutoff: 2 m) | |
(Canopy Cover) CCALS | percentage of first returns above 2.00/total first returns |
PARA2 | percentage of all returns above 2.00/total all returns |
(A) GEDI Level 2A product | |||
Label | Variable GEDI-AGB Model | Unit score | Description |
rh | rh01, rh02, … … rh100 | m | Relative height metrics at 1% interval (m) |
(B) GEDI Level 2B product | |||
cover | CCGEDI | % | Total canopy cover, defined as the percent of the ground covered by the vertical projection of canopy material |
pgap_theta | PGP_THT | % | Canopy Gap Probability |
pai | PAI | m2/m2 | Total Plant Area Index |
fhd_normal | FHD | - | Foliage Height Diversity index calculated by vertical foliage profile normalized by total plant area index [37] |
Forest Ecosystem | SNFI-4 Samples | Min AGB | Max AGB | Mean AGB | Min G | Max G | Mean G | Min N | Max N | Mean N |
---|---|---|---|---|---|---|---|---|---|---|
Dehesas | 239 | 4.11 | 154.36 | 41.20 | 1.13 | 19.50 | 6.17 | 5.09 | 969.08 | 86.37 |
Encinares | 90 | 1.72 | 101.56 | 28.25 | 0.43 | 17.80 | 5.32 | 5.09 | 1310.16 | 284.88 |
Pinaster | 82 | 1.80 | 184.48 | 73.95 | 0.59 | 46.46 | 20.51 | 14.15 | 1464.23 | 348.38 |
Alcornocales | 45 | 1.69 | 112.41 | 29.85 | 0.54 | 25.64 | 8.26 | 10.19 | 1457.15 | 222.21 |
Pinea | 52 | 11.07 | 159.90 | 49.46 | 2.77 | 39.88 | 12.41 | 29.43 | 1973.52 | 310.88 |
Forest Ecosystem | Metrics Comparison | Pearson Correlation (r) | Root-Mean-Square Error (RMSE, m) | Relative Root-Mean-Square Error (rRMSE, %) | Bias (m) | rBias (%) |
---|---|---|---|---|---|---|
Dehesas | p95–rh95 | 0.465 | 2.39 | 35.45 | −1.37 | −20.35 |
p98–rh98 | 0.496 | 2.05 | 29.39 | −0.51 | −7.26 | |
p99–rh99 | 0.497 | 2.02 | 28.40 | −0.05 | −0.70 | |
Encinares | p95–rh95 | 0.529 | 2.03 | 38.26 | 0.40 | 7.52 |
p98–rh98 | 0.544 | 2.17 | 38.68 | 0.39 | 7.016 | |
p99–rh99 | 0.545 | 2.36 | 41.37 | 0.82 | 14.46 | |
Alcornocales | p95–rh95 | 0.640 | 2.03 | 33.98 | −0.80 | −13.45 |
p98–rh98 | 0.651 | 1.95 | 31.14 | −0.06 | −0.99 | |
p99–rh99 | 0.653 | 2.04 | 31.87 | 0.35 | 5.53 | |
Pinaster | p95–rh95 | 0.713 | 4.17 | 31.30 | −1.69 | −12.71 |
p98–rh98 | 0.716 | 3.96 | 28.36 | −0.96 | −6.86 | |
p99–rh99 | 0.712 | 3.95 | 27.68 | −0.65 | −4.58 | |
Pinea | p95–rh95 | 0.718 | 2.36 | 29.80 | −0.53 | −6.76 |
p98–rh98 | 0.716 | 2.37 | 28.29 | 0.28 | 3.39 | |
p99–rh99 | 0.709 | 2.51 | 30.05 | 0.70 | 8.41 |
Regression | |||||||||
---|---|---|---|---|---|---|---|---|---|
Forest Type | Model | a | b | c | Mef | RMSE (Mg/ha) | rRMSE (%) | Bias | rBias (%) |
Dehesas | 3.00842 *** | 0.6914 *** | 0.491 *** | 0.27 | 20.4 | 49.75 | 0.18 | 0.48 | |
Encinares | 0.4387 * | 1.4052 *** | 0.5234 *** | 0.61 | 14.54 | 51.48 | 0.22 | 0.78 | |
Alconocales | 0.09626 * | 0.6912 *** | 1.283 *** | 0.84 | 9.26 | 31.01 | −0.77 | −2.58 | |
Pinaster | 0.31035 * | 0.3316 *** | 1.258 *** | 0.76 | 23.78 | 37.01 | −0.48 | −1.04 | |
Pinea | 0.15928 * | 0.988 *** | 1.0759 *** | 0.86 | 13.46 | 27.22 | 1.04 | 1.41 |
Regression | |||||||||
---|---|---|---|---|---|---|---|---|---|
Forest Type | Model | a | b | c | Mef | RMSE (Mg/ha) | rRMSE (%) | Bias (Mg/ha) | rBias (%) |
Dehesas | 10.69188 *** | 0.55525 *** | 0.10726 *** | 0.30 | 15.38 | 38.17 | −0.08 | −0.20 | |
Encinares | 5.29572 *** | 1.06131 *** | 0.41344 *** | 0.33 | 14.13 | 57.87 | 0.14 | 0.65 | |
Alconocales | 5.8822 *** | 1.50235 *** | −1.0564 *** | 0.38 | 22.06 | 84.74 | 0.71 | 2.73 | |
Pinaster | 21.21140 *** | 0.56900 *** | 0.20040 *** | 0.37 | 32.16 | 48.19 | −0.45 | −0.67 | |
Pinea | 10.40710 *** | 0.90480 *** | 0.25550 *** | 0.46 | 28.37 | 63.97 | −0.56 | −1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorado-Roda, I.; Pascual, A.; Godinho, S.; Silva, C.A.; Botequim, B.; Rodríguez-Gonzálvez, P.; González-Ferreiro, E.; Guerra-Hernández, J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sens. 2021, 13, 2279. https://doi.org/10.3390/rs13122279
Dorado-Roda I, Pascual A, Godinho S, Silva CA, Botequim B, Rodríguez-Gonzálvez P, González-Ferreiro E, Guerra-Hernández J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sensing. 2021; 13(12):2279. https://doi.org/10.3390/rs13122279
Chicago/Turabian StyleDorado-Roda, Iván, Adrián Pascual, Sergio Godinho, Carlos A. Silva, Brigite Botequim, Pablo Rodríguez-Gonzálvez, Eduardo González-Ferreiro, and Juan Guerra-Hernández. 2021. "Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests" Remote Sensing 13, no. 12: 2279. https://doi.org/10.3390/rs13122279
APA StyleDorado-Roda, I., Pascual, A., Godinho, S., Silva, C. A., Botequim, B., Rodríguez-Gonzálvez, P., González-Ferreiro, E., & Guerra-Hernández, J. (2021). Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sensing, 13(12), 2279. https://doi.org/10.3390/rs13122279