A Spectral Acceleration Approach for the Spherical Harmonics Discrete Ordinate Method
"> Figure 1
<p>Scheme of the radiative transfer problem.</p> "> Figure 2
<p>At the lower boundary of the subdomain <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math>, the downward radiances are also computed at the points <span class="html-italic">A</span>, <span class="html-italic">B</span>, <span class="html-italic">C</span>, and <span class="html-italic">D</span>, which are grid points on the upper boundary of the subdomain <span class="html-italic">k</span>. During the downward iteration step, these boundary values are passed to the subdomain <span class="html-italic">k</span>.</p> "> Figure 3
<p>Upper panel: indicator function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>i</mi> <mo>Δ</mo> <mi>x</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>=</mo> <mi>j</mi> <mo>Δ</mo> <mi>y</mi> </mrow> </semantics></math> for the <math display="inline"><semantics> <msub> <mi mathvariant="normal">O</mi> <mn>2</mn> </msub> </semantics></math>A-band test problem. Lower panel: a slice of the indicator function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math> km.</p> "> Figure 4
<p>Spectral signal for the <math display="inline"><semantics> <msub> <mi mathvariant="normal">O</mi> <mn>2</mn> </msub> </semantics></math>A-band test problem. The differences between SHDOM with the correlated <span class="html-italic">k</span>-distribution method with and without linear embedding methods are not visible in this plot.</p> "> Figure 5
<p>Relative differences in the spectral signal for the linear embedding methods and the <math display="inline"><semantics> <msub> <mi mathvariant="normal">O</mi> <mn>2</mn> </msub> </semantics></math>A-band test problem. The plots in the left panel correspond to the four-stream approximation, while the plots in the right panel correspond to the second-order of scattering approximation.</p> "> Figure 6
<p>Indicator function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>i</mi> <mo>Δ</mo> <mi>x</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>=</mo> <mi>j</mi> <mo>Δ</mo> <mi>y</mi> </mrow> </semantics></math> for the <math display="inline"><semantics> <msub> <mi>NO</mi> <mn>2</mn> </msub> </semantics></math>-test problem.</p> "> Figure 7
<p>Spectral signal for the <math display="inline"><semantics> <msub> <mi>NO</mi> <mn>2</mn> </msub> </semantics></math>-test problem.</p> "> Figure 8
<p>Relative differences in the spectral for the linear embedding methods and the <math display="inline"><semantics> <msub> <mi>NO</mi> <mn>2</mn> </msub> </semantics></math>-test problem. The plots in the left panel correspond to the four-stream approximation, while the plots in the right panel correspond to the second-order of scattering approximation.</p> ">
Abstract
:1. Introduction
2. The Spectral Acceleration Approach
- the optical coefficients of the gas molecules depend on the altitude level and the wavelength, and
- the optical coefficients of the cloud depend on the spatial coordinates but not on the wavelength.
2.1. Correlated k-Distribution Method
2.2. Dimensionality Reduction of Atmospheric Optical Parameters
- For (cf. Equation (14))is approximated by a second-order Taylor expansion around ; that is,
- The mixed directional derivatives in Equation (20) are neglected, while the first- and second-order directional derivatives are approximated by means of central differences; that is,
- The principal component analysis (PCA) [15] performs a dimensionality reduction by projecting the original N-dimensional data on the M-dimensional subspace spanned by the dominant singular vectors of the data covariance matrix.
- The locality pursuit embedding (LPE) [16] performs a principal component analysis on local nearest neighbor patches to reveal the tangent space structure on the M-dimensional subspace.
- The locality preserving projection (LPP) [17] solves a variational problem that optimally preserves the neighborhood structure of the data set.
- The locally embedded analysis (LEA) [18] uses an embedding strategy based on a linear eigenspace analysis to minimize the local reconstruction error.
- the data vectors , , the empirical orthogonal functions , , and the principal components , in the framework of dimensionality reduction techniques,
- the spectral signal measured by the instrument , by means of Equation (10).
3. Numerical Analysis
3.1. SHDOM Implementation
3.2. Numerical Results
3.2.1. Oxygen A-Band Test Problem
- For the dimensionality reduction parameter , the relative differences are smaller than over the entire spectral domain, while the RMS values are smaller than .
- The computation time corresponding to the second-order of scattering approximation is smaller than that corresponding to the four-stream approximation.
- For the second-order of scattering approximation, the fastest linear embedding method is PCA and the most accurate is LPP.
- Relative to the correlated k-distribution method, the acceleration factor is of about 7–12.
3.2.2. -Test Problem
- for the dimensionality reduction parameter , the relative differences are smaller than over the entire spectral domain, while the RMS values are smaller than ;
- the second-order of scattering approximation is faster than the four-stream approximation;
- for the second-order of scattering approximation, the fastest linear embedding method is PCA and the most accurate is LPE;
- the acceleration factor is about 9–12.
4. Conclusions
- SHDOM with the correlated k-distribution and linear embedding methods has a sufficiently high accuracy. The relative differences in the spectral signal are smaller than (over the entire spectral domain) in the case of a two-dimensional atmosphere, and in the case of a three-dimensional atmosphere. In three of the four cases, the most accurate linear embedding method is LPE.
- The linear embedding methods based on the second-order of scattering approximation are faster than those based on the four-stream approximation. Specifically, in the case of a two-dimensional atmosphere, the computation time of the linear embedding methods is on average about 4 min and 30 s for the four-stream approximation, and 3 min and 20 s for the second-order of scattering approximation, while in the case of a three-dimensional atmospheres, the corresponding times are 1 h and 21 min for the four-stream approximation, and 1 h and 2 min for the second-order of scattering approximation. The fastest linear embedding methods is PCA followed by LPE. For the test examples considered in our numerical analysis, PCA in conjunction with a second-order of scattering approximation yields an acceleration factor of 12 relative to the correlated k-distribution method.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Algorithm A1: PCA. |
|
Algorithm A2: LPE. |
|
Algorithm A3: LPP. |
|
Algorithm A4: LEA. |
|
References
- Evans, K. The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci. 1998, 55, 429–446. [Google Scholar] [CrossRef]
- Spherical Harmonic Discrete Ordinate Method (SHDOM) for Atmospheric Radiative Transfer. Available online: http://coloradolinux.com/shdom/ (accessed on 11 May 2020).
- Kuo, K.S.; Weger, R.; Welch, R.; Cox, S. The Picard iterative approximation to the solution of the integral equation of radiative transfer—Part II. Three-dimensional geometry. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 195–213. [Google Scholar] [CrossRef]
- Goody, R.; Yung, Y. Atmospheric Radiation: Theoretical Basis; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Fu, Q.; Liou, K.N. On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres. J. Atmos. Sci. 1992, 49, 2139–2156. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Natraj, V. A review of fast radiative transfer techniques. In Light Scattering Reviews 8; Springer: Berlin/Heidelberg, Germany, 2013; pp. 475–504. [Google Scholar] [CrossRef]
- Del Águila, A.; Efremenko, D.S.; Trautmann, T. A Review of Dimensionality Reduction Techniques for Processing Hyper-Spectral Optical Signal. Light Eng. 2019, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Del Águila, A.; Efremenko, D.; Molina García, V.; Xu, J. Analysis of Two Dimensionality Reduction Techniques for Fast Simulation of the Spectral Radiances in the Hartley-Huggins Band. Atmosphere 2019, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Natraj, V.; Jiang, X.; Shia, R.; Huang, X.; Margolis, J.; Yung, Y. Application of the principal component analysis to high spectral resolution radiative transfer: A case studyof the O2 A-band. J. Quant. Spectrosc. Radiat. Transf. 2005, 95, 539–556. [Google Scholar] [CrossRef]
- Natraj, V.; Shia, R.; Yung, Y. On the use of principal component analysis to speed up radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 810–816. [Google Scholar] [CrossRef]
- Efremenko, D.; Doicu, A.; Loyola, D.; Trautmann, T. Optical property dimensionality reduction techniques for accelerated radiative transfer performance: Application to remote sensing total ozone retrievals. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 128–135. [Google Scholar] [CrossRef]
- Goody, R.; West, R.; Chen, L.; Crisp, D. The correlated k-method for radiation calculations in nonhomogeneous atmosphere. J. Quant. Spectrosc. Radiat. Transf. 1989, 42, 539–550. [Google Scholar] [CrossRef]
- Ambartzumyan, V. The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars. Publ. Obs. Astron. Univ. Leningr. 1936, 6, 7–18. [Google Scholar]
- Wiscombe, W.; Evans, J. Exponential-sum fitting of radiative transmission functions. J. Comput. Phys. 1997, 24, 416–444. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Min, W.; Lu, K.; He, X. Locality pursuit embedding. Pattern Recognit. 2004, 37, 781–788. [Google Scholar] [CrossRef]
- He, X.; Niyogi, P. Locality Preserving Projections. In NIPS’03: Proceedings of the 16th International Conference on Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2003; pp. 153–160. Available online: https://papers.nips.cc/paper/2359-locality-preserving-projections.pdf (accessed on 1 June 2020).
- Fu, Y.; Huang, T. Locally Linear Embedded Eigenspace Analysis. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign. 2005. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8003&rep=rep1&type=pdf (accessed on 29 May 2020).
- Pincus, R.; Evans, K.F. Computational Cost and Accuracy in Calculating Three-Dimensional Radiative Transfer: Results for New Implementations of Monte Carlo and SHDOM. J. Atmos. Sci. 2009, 66, 3131–3146. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, M.; Marshak, A.; Ackerman, A. Cellular Statistical Models of Broken Cloud Fields. Part I: Theory. J. Atmos. Sci. 2010, 67, 2125–2151. [Google Scholar] [CrossRef]
- Anderson, G.; Clough, S.; Kneizys, F.; Chetwynd, J.; Shettle, E. AFGL Atmospheric Constituent Profiles (0–120 km); AFGL-TR-86-0110; Air Force Geophysics Laboratory: Hanscom Air Force Base, MA, USA, 1986. [Google Scholar]
- Nakajima, T.; Tanaka, M. Algorithms for radiative intensity calculations in moderately thick atmos using a truncation approximation. J. Quant. Spectrosc. Radiat. Transf. 1988, 40, 51–69. [Google Scholar] [CrossRef]
- Efremenko, D.S.; Doicu, A.; Loyola, D.; Trautmann, T. Fast Stochastic Radiative Transfer Models for Trace Gas and Cloud Property Retrievals Under Cloudy Conditions. In Springer Series in Light Scattering; Kokhanovsky, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 231–277. [Google Scholar] [CrossRef]
- Tarasenkov, M.V.; Kirnos, I.V.; Belov, V.V. Observation of the Earth’s surface from the space through a gap in a cloud field. Atmos. Ocean. Opt. 2017, 30, 39–43. [Google Scholar] [CrossRef]
- Zhuravleva, T.B.; Nasrtdinov, I.M.; Russkova, T.V. Influence of 3D cloud effects on spatial-angular characteristics of the reflected solar radiation field. Atmos. Ocean. Opt. 2017, 30, 103–110. [Google Scholar] [CrossRef]
- Doicu, A.; Efremenko, D. Linearizations of the Spherical Harmonic Discrete Ordinate Method (SHDOM). Atmosphere 2019, 10, 292. [Google Scholar] [CrossRef] [Green Version]
Subdomain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Altitude levels [km] | 0–3 | 3–4 | 4–7 | 7–10 | 10–14 | 14–22 | 22–30 | 30–40 |
Discretization step [km] | 0.5 | 0.1 | 0.5 | 0.5 | 1.0 | 2.0 | 2.0 | 5 |
Method | Four-Stream | Second-Order Scattering | |
---|---|---|---|
PCA | RMS | ||
CPU | 0:04:21 | 0:03:01 | |
LEA | RMS | ||
CPU | 0:04:45 | 0:03:17 | |
LPE | RMS | ||
CPU | 0:04:35 | 0:03:05 | |
LPP | RMS | ||
CPU | 0:05:01 | 0:03:53 |
Subdomain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Memory [MB] | 549 | 924 | 549 | 486 | 228 | 228 | 228 | 52 |
Method | Four-Stream | Second-Order Scattering | |
---|---|---|---|
PCA | RMS | ||
CPU | 1:21:24 | 1:02:56 | |
LEA | RMS | ||
CPU | 1:22:18 | 1:03:48 | |
LPE | RMS | ||
CPU | 1:21:53 | 1:03:21 | |
LPP | RMS | ||
CPU | 1:22:43 | 1:04:09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doicu, A.; Efremenko, D.S.; Trautmann, T. A Spectral Acceleration Approach for the Spherical Harmonics Discrete Ordinate Method. Remote Sens. 2020, 12, 3703. https://doi.org/10.3390/rs12223703
Doicu A, Efremenko DS, Trautmann T. A Spectral Acceleration Approach for the Spherical Harmonics Discrete Ordinate Method. Remote Sensing. 2020; 12(22):3703. https://doi.org/10.3390/rs12223703
Chicago/Turabian StyleDoicu, Adrian, Dmitry S. Efremenko, and Thomas Trautmann. 2020. "A Spectral Acceleration Approach for the Spherical Harmonics Discrete Ordinate Method" Remote Sensing 12, no. 22: 3703. https://doi.org/10.3390/rs12223703
APA StyleDoicu, A., Efremenko, D. S., & Trautmann, T. (2020). A Spectral Acceleration Approach for the Spherical Harmonics Discrete Ordinate Method. Remote Sensing, 12(22), 3703. https://doi.org/10.3390/rs12223703