Abstract
For purposes of atmospheric correction of satellite images, the problem of estimating the distance from the cloud gap center at which the effect from cloudiness on the satellite image can be neglected is posed. The Monte Carlo method with the backward simulation scheme is used. The value for the radius of the gap in continuous cloudiness at which the influence of clouds changes the received radiation intensity by 10% has been obtained. Dependences of the received intensity on the gap radius have been obtained and explained.
Similar content being viewed by others
References
V. A. Tolpin, E. A. Lupyan, S. A. Bartalev, D. E. Plotnikov, and A. M. Matveev, “Possibilities of agricultural vegetation condition analysis with the “VEGA” satellite service,” Opt. Atmos. Okeana 27 (7), 581–586 (2014).
D. V. Malakhov and A. F. Islamgulova, “The quantitative interpretation of pasture image parameters: An experience of low and moderate spatial resolution remotely sensed data application,” Opt. Atmos. Okeana 27 (7), 587–592 (2014).
P. N. Dagurov, A. V. Dmitriev, Zh. B. Dymbrylov, and S. B. Radnaeva, “Earth’s surface brightness temperature measured by the microwave radiometer SMOS, and the problem of soil moisture recovering,” Opt. Atmos. Okeana 27 (7), 605–609 (2014).
E. A. Cherenkova and E. A. Popova, “Dynamics of soil moistening in spring and summer 2010 in the European Russia on the basis of the analysis of remote sensing data,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12 (4), 119–130 (2015).
T. N. Chimitdorzhiev, I. I. Kirbizhekova, and M. E. Bykov, “Study of landslide processes and deformations of the landscape of the Yamal peninsula by radar interferometry and texture analysis,” Opt. Atmos. Okeana 27 (7), 610–614 (2014).
V. V. Vinogradova, T. B. Titkova, E. A. Belonovskaya, and R. G. Gracheva, “The impact of climate change on mountain landscapes of the Northern Caucasus,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12 (6), 35–47 (2015).
V. V. Kozoderov, E. V. Dmitriev, and V. P. Kamentsev, “Technologies for processing optical images of high spatial and spectral resolution,” Atmos. Ocean. Opt. 27 (6), 558–565 (2014).
O. A. Tomshin and V. S. Solovyev, “Study of variations in parameters of atmospheric aerosol due to large-scale forest fires in Central Yakutia,” Atmos. Ocean. Opt. 28 (1), 95–99 (2015).
V. V. Kozoderov, “Use of optical remote sensing data for the study of natural climate processes,” Klimat Priroda 3 (2), 3–16 (2012).
M. Yu. Kataev and A. A. Bekerov, “Detection of ecological changes in the natural environment from satellite measurements,” Opt. Atmos. Okeana 27 (7), 652–656 (2014).
L. M. Mitnik and E. S. Khazanova, “Ice cover dynamics in the East Siberian and Laptev Seas at the second half of October 2014 remote sensing data,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12 (2), 100–113 (2015).
A. M. Kauazov, A. S. Dara, M. Zh. Batyrbaeva, I. S. Vitkovskaya, N. R. Muratova, V. G. Salnikov, G. K. Turulina, S. E. Polyakova, L. F. Spivak, and S. I. Tyurebaeva, “Research of dynamics dates of snow cover disappearance in the Northern Kazakhstan,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (1), 161–168 (2016).
N. N. Zavalishin, “Reconstruction of the annual average values of the Earth’s albedo,” Atmos. Ocean. Opt. 27 (6), 493–498 (2014).
A. V. Zimovaya, M. V. Tarasenkov, and V. V. Belov, “Allowance for polarization in passive space sounding of reflective properties of the Earth’s surface,” Atmos. Ocean. Opt. 29 (4), 342–347 (2016).
O. V. Nikolaeva, “A new algorithm of retrieving the surface albedo by satellite remote sensing data,” Atmos. Ocean. Opt. 29 (4), 342–347 (2016).
D. V. Solomatov, S. V. Afonin, and V. V. Belov, “Construction of cloud mask and removal of semitransparent clouds on ETM+/Landsat-7 satellite images,” Opt. Atmos. Okeana 26 (9), 798–803 (2013).
B. A. Kargin and S. M. Prigarin, “Imitational simulation of cumulus clouds for studying solar radiative transfer in the atmosphere by the Monte Carlo method,” Atmos. Ocean. Opt. 7 (9), 690–696 (1994).
V. E. Zuev and G. A. Titov, Atmospheric Optics and the Climate (Spektr, Tomsk, 1996) [in Russian].
S. M. Prigarin, T. B. Zhuravleva, and P. V. Volikova, “Poisson model of multilayer broken clouds,” Atmos. Ocean. Opt. 15 (10), 832–838 (2002).
T. B. Zhuravleva and K. M. Firsov, “Algorithms for calculation of sunlight fluxes in the cloudy and cloudless atmosphere,” Atmos. Ocean. Opt. 17 (11), 799–806 (2004).
T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part II. Stochastic clouds,” Atmos. Ocean. Opt. 21 (3), 163–175 (2008).
G. A. Titov, T. B. Zhuravleva, and V. E. Zuev, “Mean radiation fluxes in the near-IR spectral range: Algorithms for calculation,” J. Geophys. Res., D 102 (2), 1819–1832 (1997).
S. M. Prigarin, B. A. Kargin, and U. G. Oppel, “Random fields of broken clouds and their associated direct solar radiation, scattered transmission and albedo,” Pure Appl. Opt. 7 (6), 1389–1402 (1998).
O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, A. A. Kokhanovsky, V. S. Kuznetsov, and B. Mayer, “The influence of neighbouring clouds on the clean sky reflectance studied with the 3-D transport code RADUGA,” J. Quant. Spectrosc. Radiat. Transfer. 24 (3–4), 405–424 (2005).
A. Marshak, A. Davis, W. Wiscombe, and R. Cahalan, “Radiative smoothing in fractal clouds,” J. Geophys. Res. D 100 (12), 26247–26261 (1995).
A. Marshak, G. Wen, J. A. Coakley, L. A. Remer, N. G. Loeb, and R. F. Cahalan, “A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds,” J. Geophys. Res. 113 ((7), 17 (2008).
A. Marshak, K. F. Evans, T. Varnai, and G. Wen, “Extending 3D near-cloud corrections from shorter to longer wavelengths,” J. Quant. Spectrosc. Radiat. Transfer 147, 79–85 (2014).
G. Wen, A. Marshak, L. Remer, R. Levy, N. Loeb, T. Varnai, and R. F. Cahalan, “Correction of MODIS Aerosol Retrieval for 3D radiative effects in broken cloud fields,” AIP Conf. Proc. 1531, 280–283 (2013).
G. Wen, A. Marshak, R. Levy, L. A. Remer, N. G. Loeb, T. Varnai, and R. F. Cahalan, “Improvement of MODIS aerosol retrievals near clouds,” J. Geophys. Res. Atmos. 118, 9168–9181 (2013).
T. Varnai and A. Marshak, “Effect of cloud fraction on near-cloud aerosol behavior in the MODIS atmospheric correction ocean color product,” Remote Sens. 7 (5), 5283–5299 (2015).
G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].
F. X. Kneizys, E. P. Shettle, G. P. Anderson, L.W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User guide to LOWTRAN-7 (Hansom AFB, 2010).
E. L. Krinov, Spectral Refractivity of Natural Formations (Izd-vo AN SSSR, Moscow, 1947) [in Russian].
M. V. Tarasenkov and V. V. Belov, “Software package for reconstructing reflective properties of the Earth’s surface in the visible and UV ranges,” Atmos. Ocean. Opt. 28 (1), 89–94 (2015).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © M.V. Tarasenkov, I.V. Kirnos, V.V. Belov, 2017, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Tarasenkov, M.V., Kirnos, I.V. & Belov, V.V. Observation of the Earth’s surface from the space through a gap in a cloud field. Atmos Ocean Opt 30, 39–43 (2017). https://doi.org/10.1134/S1024856017010134
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856017010134