Tomographic Background-Oriented Schlieren for Axisymmetric and Weakly Non-Axisymmetric Supersonic Jets
<p>BOS imaging schematic diagram.</p> "> Figure 2
<p>Geometrical details of the (<b>a</b>) non–beveled nozzle, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mn>30</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> double–beveled nozzle, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mn>60</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> double−beveled nozzle [<a href="#B40-symmetry-16-00596" class="html-bibr">40</a>].</p> "> Figure 3
<p>A schematic for the TBOS setup.</p> "> Figure 4
<p>(<b>a</b>) Fields of displacement amplitude at selected views and (<b>b</b>) associated light deflections.</p> "> Figure 5
<p>Comparison of <math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <mo>∇</mo> <mi>n</mi> </mfenced> </semantics></math> between CFD data and reconstruction results: (<b>left</b>) the 3D spatial distribution, (<b>center</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>–slice at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math> mm, and (<b>right</b>) <math display="inline"><semantics> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </semantics></math>–slice at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> mm.</p> "> Figure 6
<p>Comparison of <math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <mo>∇</mo> <mi>n</mi> </mfenced> </semantics></math> profiles: (<b>a</b>,<b>b</b>) are sampled at ① and ② marked in <a href="#symmetry-16-00596-f005" class="html-fig">Figure 5</a>, respectively.</p> "> Figure 7
<p>Comparison of <math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <mo>∇</mo> <mi>n</mi> </mfenced> </semantics></math> between CFD and reconstruction results: (<b>left</b>) the 3D spatial distribution, (<b>center</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>–slice at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math> mm, and (<b>right</b>) <math display="inline"><semantics> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </semantics></math>–slice at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> mm.</p> "> Figure 8
<p>Comparison of <math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <mo>∇</mo> <mi>n</mi> </mfenced> </semantics></math> profiles: (<b>a</b>,<b>b</b>) are sampled at ① and ② marked in <a href="#symmetry-16-00596-f007" class="html-fig">Figure 7</a>, respectively.</p> "> Figure 9
<p>(<b>a</b>) Pixel displacement diagram at a certain camera viewing angle. (<b>b</b>) Pixel displacement diagram corresponding to the viewing angle under a 2D silhouette (white closed line segment). (<b>c</b>) Visual hull, the interior of which represents the flow field flow area.</p> "> Figure 10
<p>Comparison of <math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <mo>∇</mo> <mi>n</mi> </mfenced> </semantics></math> of FDK and CGLS reconstruction results after employing VH.</p> "> Figure 11
<p>Comparison of <math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <mo>∇</mo> <mi>n</mi> </mfenced> </semantics></math> profiles: (<b>a</b>,<b>b</b>) are sampled at ① and ② marked in <a href="#symmetry-16-00596-f007" class="html-fig">Figure 7</a>, respectively.</p> "> Figure 12
<p>Upon incorporating the VH, a comparative analysis of the reconstruction results: (<b>a</b>–<b>d</b>) are the cases using FDK with the noise intensity ratio of 0%(no-noise), 1%, 2%, and 5% respectively, and (<b>e</b>–<b>h</b>) are the cases using CGLS under the same condition.</p> "> Figure 13
<p>Cross-sectional views depicting the downstream development of jet flows from different nozzles: (<b>top</b>) circular nozzle, (<b>middle</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mn>30</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> double–beveled nozzle, and (<b>bottom</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mn>60</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> double–beveled nozzle.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Principle of TBOS
2.2. Tomographic Reconstruction Algorithm
2.2.1. Analytical Algorithm
- Perform a 1D Fourier transform on the projection data.
- Select appropriate filters to perform convolutional filtering on the transformed projection.
- Back-project the filtered projection data into the measurement volume.
- All back projections are superimposed to obtain the reconstructed projection.
2.2.2. Iterative Algorithm
Algorithm 1 CGLS |
Initialize: for do end for Output: |
2.3. Experimental Setting
3. Results and Discussion
3.1. Axisymmetric Jet Flow
3.2. Non-Axisymmetric Jet Flow
3.2.1. Weakly Non-Axisymmetric Jet Flow
3.2.2. Visual Hull Technique
3.2.3. Reconstruction Results with VH
3.3. Noise Impact
3.4. Jet Flow Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NPR | nozzle pressure ratio |
IOR | index of refraction |
BOS | background-oriented Schlieren |
TBOS | tomographic background-oriented Schlieren |
FBP | Filtered Back Projection |
FDK | Feldkamp, Davis, and Kress |
ART | algebraic reconstruction technique |
SART | Simultaneous Algebraic Reconstruction Technique |
SIRT | Simultaneous Iterative Reconstruction Technique |
CGLS | Conjugate Gradient Least Square |
CFD | Computational Fluid Dynamics |
RANS | Reynolds-Averaged Navier–Stokes |
VH | visual hull |
References
- Hadjadj, A.; Kudryavtsev, A.N.; Ivanov, M.S. Numerical Investigation of Shock-Reflection Phenomena in Overexpanded Supersonic Jets. AIAA J. 2004, 42, 570–577. [Google Scholar] [CrossRef]
- Matsuo, S.; Setoguchi, T.; Nagao, J.; Alam, M.M.A.; Kim, H.D. Experimental study on hysteresis phenomena of shock wave structure in an over-expanded axisymmetric jet. J. Mech. Sci. Technol. 2011, 25, 2559–2565. [Google Scholar] [CrossRef]
- Schmisseur, J.D.; Gaitonde, D.V. Numerical simulation of Mach reflection in steady flows. Shock Waves 2011, 21, 499–509. [Google Scholar] [CrossRef]
- Shimshi, E.; Ben-Dor, G.; Levy, A. Numeric study of flow separation and shock reflection hysteresis in planar nozzles. Int. J. Aerosp. Innov. 2010, 2, 221–233. [Google Scholar] [CrossRef]
- Tam, C.K.W. Supersonic Jet Noise. Annu. Rev. Fluid Mech. 1995, 27, 17–43. [Google Scholar] [CrossRef]
- Tam, C.; Golebiowski, M.; Seiner, J. On the two components of turbulent mixing noise from supersonic jets. In Proceedings of the Aeroacoustics Conference, State College, PA, USA, 6–8 May 1996. [Google Scholar] [CrossRef]
- Raman, G. Supersonic jet screech: Half-century from powell to the present. J. Sound Vib. 1999, 225, 543–571. [Google Scholar] [CrossRef]
- Seiner, J.; Norum, T. Aerodynamic aspects of shock containing jet plumes. In Proceedings of the 6th Aeroacoustics Conference, Hartford, CT, USA, 4–6 June 1980. [Google Scholar] [CrossRef]
- Phanindra, B.C.; Rathakrishnan, E. Corrugated Tabs for Supersonic Jet Control. AIAA J. 2010, 48, 453–465. [Google Scholar] [CrossRef]
- New, T.H.; Tsovolos, D. Influence of nozzle sharpness on the flow fields of V-notched nozzle jets. Phys. Fluids 2009, 21, 084107. [Google Scholar] [CrossRef]
- Shi, S.; New, T.H. Some observations in the vortex-turning behaviour of noncircular inclined jets. Exp. Fluids 2013, 54, 1614. [Google Scholar] [CrossRef]
- Zaman, K.B.M.Q. Spreading characteristics of compressible jets from nozzles of various geometries. J. Fluid Mech. 1999, 383, 197–228. [Google Scholar] [CrossRef]
- Gutmark, E.J.; Schadow, K.C.; Yu, K.H. Mixing Enhancement in Supersonic Free Shear Flows. Annu. Rev. Fluid Mech. 1995, 27, 375–417. [Google Scholar] [CrossRef]
- Kim, J.H.; Samimy, M. Mixing enhancement via nozzle trailing edge modifications in a high speed rectangular jet. Phys. Fluids 1999, 11, 2731–2742. [Google Scholar] [CrossRef]
- Wu, J.; New, T.H. An investigation on supersonic bevelled nozzle jets. Aerosp. Sci. Technol. 2017, 63, 278–293. [Google Scholar] [CrossRef]
- Rice, E.; Raman, G. Mixing noise reduction for rectangular supersonic jets by nozzle shaping and induced screech mixing. In Proceedings of the 15th Aeroacoustics Conference, Long Beach, CA, USA, 25–27 October 1993. [Google Scholar] [CrossRef]
- Raman, G. Screech tones from rectangular jets with spanwise oblique shock-cell structures. J. Fluid Mech. 1997, 330, 141–168. [Google Scholar] [CrossRef]
- Richard, H.; Raffel, M. Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Technol. 2001, 12, 1576–1585. [Google Scholar] [CrossRef]
- Dalziel, S.B.; Hughes, G.O.; Sutherland, B.R. Whole-field density measurements by ‘synthetic schlieren’. Exp. Fluids 2000, 28, 322–335. [Google Scholar] [CrossRef]
- Tipnis, T.J.; Finnis, M.V.; Knowles, K.; Bray, D. Density measurements for rectangular free jets using background-oriented schlieren. Aeronaut. J. 2013, 117, 771–785. [Google Scholar] [CrossRef]
- Ota, M.; Kurihara, K.; Aki, K.; Miwa, Y.; Inage, T.; Maeno, K. Quantitative density measurement of the lateral jet/cross-flow interaction field by colored-grid background oriented schlieren (CGBOS) technique. J. Vis. 2015, 18, 543–552. [Google Scholar] [CrossRef]
- Wong, P. Investigation of Axi-Symmetric Laminar and Turbulent Jets with Background Oriented Schlieren (BOS); VKI Stagiaire Report 6; von Karman Institute: Sint-Genesius-Rode, Belgium, 2001. [Google Scholar]
- Kirmse, T. Weiterentwicklung des Messsystems BOS (Background Oriented Schlieren) zur Quantitativen Bestimmung axialsymmetrischer Dichtefelder. Ph.D. Thesis, Institute of Aerodynamics and Flow Technology, Göttingen, Germany, 2003. Available online: https://elib.dlr.de/49602/ (accessed on 7 April 2024).
- Venkatakrishnan, L.; Meier, G.E.A. Density measurements using the Background Oriented Schlieren technique. Exp. Fluids 2004, 37, 237–247. [Google Scholar] [CrossRef]
- Tan, D.J.; Edgington-Mitchell, D.; Honnery, D. Measurement of density in axisymmetric jets using a novel background-oriented schlieren (BOS) technique. Exp. Fluids 2015, 56, 204. [Google Scholar] [CrossRef]
- Xiong, Y.; Kaufmann, T.; Noiray, N. Towards robust BOS measurements for axisymmetric flows. Exp. Fluids 2020, 61, 178. [Google Scholar] [CrossRef]
- Kirby, R. Tomographic Background-Oriented Schlieren for Three-Dimensional Density Field Reconstruction in Asymmetric Shock-containing Jets. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Nicolas, F.; Donjat, D.; Léon, O.; Le Besnerais, G.; Champagnat, F.; Micheli, F. 3D reconstruction of a compressible flow by synchronized multi-camera BOS. Exp. Fluids 2017, 58, 46. [Google Scholar] [CrossRef]
- Ihrke, I. Reconstruction and Rendering of Time-Varying Natural Phenomena. Ph.D. Thesis, Universitat des Saarlandes, Saarbrücken, Germany, 2007. [Google Scholar]
- Nicolas, F.; Todoroff, V.; Plyer, A.; Le Besnerais, G.; Donjat, D.; Micheli, F.; Champagnat, F.; Cornic, P.; Le Sant, Y. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements. Exp. Fluids 2016, 57, 13. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Scarano, F.; Kähler, C.J.; Wereley, S.T.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Grauer, S.J.; Mohri, K.; Yu, T.; Liu, H.; Cai, W. Volumetric emission tomography for combustion processes. Prog. Energy Combust. Sci. 2023, 94, 101024. [Google Scholar] [CrossRef]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; Number 33 in Classics in Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001. [Google Scholar]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612. [Google Scholar] [CrossRef]
- Andersen, A.H.; Kak, A.C. Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm. Ultrason. Imaging 1984, 6, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Sabaté Landman, M.; Biguri, A.; Hatamikia, S.; Boardman, R.; Aston, J.; Schönlieb, C.B. On Krylov methods for large-scale CBCT reconstruction. Phys. Med. Biol. 2023, 68, 155008. [Google Scholar] [CrossRef]
- Rajendran, L.K.; Bane, S.P.M.; Vlachos, P.P. PIV/BOS synthetic image generation in variable density environments for error analysis and experiment design. Meas. Sci. Technol. 2019, 30, 085302. [Google Scholar] [CrossRef]
- CFX-Solver, A. Theory Guide, Release ll; ANSYS Inc.: Canonsburg, PA, USA, 2006. [Google Scholar]
- Aswin, G.; Chakraborty, D. Numerical simulation of transverse side jet interaction with supersonic free stream. Aerosp. Sci. Technol. 2010, 14, 295–301. [Google Scholar] [CrossRef]
- Wu, J.; Lim, H.D.; Wei, X.; New, T.H.; Cui, Y.D. Flow Characterization of Supersonic Jets Issuing From Double-Beveled Nozzles. J. Fluids Eng. 2019, 141, 011202. [Google Scholar] [CrossRef]
- Lang, H.M.; Oberleithner, K.; Paschereit, C.O.; Sieber, M. Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography. Exp. Fluids 2017, 58, 88. [Google Scholar] [CrossRef]
- Atcheson, B.; Ihrke, I.; Heidrich, W.; Tevs, A.; Bradley, D.; Magnor, M.; Seidel, H.P. Time-resolved 3d capture of non-stationary gas flows. ACM Trans. Graph. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Pan, C.; Xue, D.; Xu, Y.; Wang, J.; Wei, R. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci. China Phys. Mech. Astron. 2015, 58, 104704. [Google Scholar] [CrossRef]
- Liu, H.; Shui, C.; Cai, W. Time-resolved three-dimensional imaging of flame refractive index via endoscopic background-oriented Schlieren tomography using one single camera. Aerosp. Sci. Technol. 2020, 97, 105621. [Google Scholar] [CrossRef]
Parameter | Setting |
---|---|
DCB | 1500 mm |
DCO | 750 mm |
Reconstruction resolution | voxels |
Measurement size | mm3 |
Lens focal length | 50 mm |
Pixel resolution | pixels |
Pixel physical size | μm2 |
resolution | |
Camera array | Coplanar |
Camera number | 15 |
Algorithom | Axisymmetry | Non-Axisymmetry | |||||||
---|---|---|---|---|---|---|---|---|---|
t(s) | Peak | RMSE | t(s) | Peak Error (%) | RMSE () | ||||
Error (%) | () | No-VH | VH | No-VH | VH | VH * | |||
FDK | 13 | 0.3 | 1.07 | 2 | 7.1 | 7.1 | 10.89 | 3.83 | 16.67 |
SIRT | 401 | 40 | 5.97 | 197 | 40 | – | 6.42 | – | – |
SART | 2038 | 1.8 | 2.44 | 292 | 37 | – | 6.20 | – | – |
CGLS | 77 | 1.9 | 2.02 | 32 | 36 | 9.3 | 6.24 | 3.67 | 5.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, T.; Li, J.; Wu, J.; Xiong, Y. Tomographic Background-Oriented Schlieren for Axisymmetric and Weakly Non-Axisymmetric Supersonic Jets. Symmetry 2024, 16, 596. https://doi.org/10.3390/sym16050596
Jia T, Li J, Wu J, Xiong Y. Tomographic Background-Oriented Schlieren for Axisymmetric and Weakly Non-Axisymmetric Supersonic Jets. Symmetry. 2024; 16(5):596. https://doi.org/10.3390/sym16050596
Chicago/Turabian StyleJia, Tong, Jiawei Li, Jie Wu, and Yuan Xiong. 2024. "Tomographic Background-Oriented Schlieren for Axisymmetric and Weakly Non-Axisymmetric Supersonic Jets" Symmetry 16, no. 5: 596. https://doi.org/10.3390/sym16050596
APA StyleJia, T., Li, J., Wu, J., & Xiong, Y. (2024). Tomographic Background-Oriented Schlieren for Axisymmetric and Weakly Non-Axisymmetric Supersonic Jets. Symmetry, 16(5), 596. https://doi.org/10.3390/sym16050596