[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Lucas-Kanade (LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging, a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm’s accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian R J. Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech, 1991, 23: 261–304

    Article  ADS  Google Scholar 

  2. Westerweel J. Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids, 2000, 29: S3–S12

    Article  Google Scholar 

  3. Wang J J, Pan C, Choi K S, et al. Formation, growth and instability of vortex pairs in an axisymmetric stagnation flow. J Fluid Mech, 2013, 725: 681–708

    Article  MATH  ADS  Google Scholar 

  4. Wang H B, Wang Z G, Sun M B, et al. Nonlinear analysis of combustion oscillations in a cavity-based supersonic combustor. Sci China Tech Sci, 2013, 56: 1093–1101

    Article  Google Scholar 

  5. Liu H L, Wang K, Kim H B, et al. Experimental investigation of the unsteady flow in a double-blade centrifugal pump impeller. Sci China Tech Sci, 2013, 56: 812–817

    Article  Google Scholar 

  6. Xu Y, Wang J J. Recent development of vortex ring impinging onto the wall. Sci China Tech Sci, 2013, 56: 2447–2455

    Article  Google Scholar 

  7. de Silva C M, Philip J, Chauhan K, et al. Multiscale geometry and scaling of the turbulent-nonturbulent interface in high reynolds number boundary layers. Phys Rev Lett, 2013, 111: 107501

    Article  Google Scholar 

  8. Herpin S, Stanislas M, Foucaut J M, et al. Influence of the Reynolds number on the vortical structures in the logarithmic region of turbulent boundary layers. J Fluid Mech, 2013, 716: 5–50

    Article  MATH  ADS  Google Scholar 

  9. Xu Y, Feng L H. Influence of orifice-to-wall distance on synthetic jet vortex rings impinging on a fixed wall. Sci China Tech Sci, 2013, 56: 1798–1806

    Article  MathSciNet  Google Scholar 

  10. Zhang X, Pan C, Shen J Q, et al. Effect of surface roughness element on near wall turbulence with zero-pressure gradient. Sci China-Phys Mech Astron, 2015, 58: 064702

    Google Scholar 

  11. Xu M Y, Zhang J P, Mi J C, et al. PIV measurements of turbulent jets issuing from triangular and circular orifice plates. Sci China-Phys Mech Astron, 2013, 56: 1176–1186

    Article  ADS  Google Scholar 

  12. Hu Y, Wang J J. The effects of attached flexible tail length on the flow structure of an oscillating cylinder. Sci China-Phys Mech Astron, 2013, 56: 340–352

    Article  ADS  Google Scholar 

  13. Champagnat F, Plyer A, Le Besnerais G, et al. Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids, 2011, 50: 1169–1182

    Article  Google Scholar 

  14. Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of the International Joint Conference on Artificial Intelligence, San Francisco, 1981, 81: 674–679

    Google Scholar 

  15. Baker S, Matthews I. Lucas-Kanade 20 years on: A unifying framework. Int J Comput Vision, 2004, 56: 221–255

    Article  Google Scholar 

  16. Venugopal V, Patterson C, Shinpaugh K. Accelerating particle image velocimetry using hybrid architectures. In: Proceedings of symposium on application accelerators in high performance computing, Illinois, 2009

    Google Scholar 

  17. Satake S, Sorimachi G, Masuda N, et al. Special-purpose computer for Particle Image Velocimetry. Comput Phys Commun, 2011, 182: 1178–1182

    Article  MATH  ADS  Google Scholar 

  18. Ruhnau P, Kohlberger T, Schnorr C, et al. Variational optical flow estimation for particle image velocimetry. Exp Fluids, 2005, 38: 21–32

    Article  Google Scholar 

  19. Corpetti T, Heitz D, Arroyo G, et al. Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids, 2006, 40: 80–97

    Article  Google Scholar 

  20. Liu T S, Shen L X. Fluid flow and optical flow. J Fluid Mech, 2008, 614: 253–291

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Scarano F, Riethmuller M L. Advances in iterative multigrid PIV image processing. Exp Fluids, 2000, 29: S51–S60

    Article  Google Scholar 

  22. Lecuona A, Ruiz-Rivas U, Rodriguez-Aumente P. Near field vortex dynamics in axially forced, co-flowing jets: Quantitative description of a low-frequency configuration. Eur J Mech B-Fluid, 2002, 21: 701–720

    Article  MATH  MathSciNet  Google Scholar 

  23. Gautier N, Aider J L. Feed-forward control of a perturbed backwardfacing step flow. J Fluid Mech, 2014, 759: 181–196

    Article  ADS  Google Scholar 

  24. Davoust S, Jacquin L, Leclaire B. Dynamics of m=0 and m=1 modes and of streamwise vortices in a turbulent axisymmetric mixing layer. J Fluid Mech, 2012, 709: 408–444

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Champagnat F, Cornic P, Cheminet A, et al. Tomographic PIV: Particles versus blobs. Meas Sci Technol, 2014, 25: 084002

    Article  ADS  Google Scholar 

  26. Hemati M S, Williams M O, Rowley C W. Dynamic mode decomposition for large and streaming datasets. Phys Fluids, 2014, 26: 111701

    Article  ADS  Google Scholar 

  27. Horn B K, Schunck B G. Determining optical flow. International society for optics and photonics. In: 1981 Technical Symposium East, Washington, 1981: 319 C 331

    Google Scholar 

  28. Hager G D, Belhumeur P N. Efficient region tracking with parametric models of geometry and illumination. IEEE Trans Pattern Anal Mach Intel, 1998, 20: 1025–1039

    Article  Google Scholar 

  29. Keller Y, Averbuch A. Fast motion estimation using bidirectional gradient methods. IEEE Trans Image Proc, 2004, 13: 1042–1054

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Wereley S T, Meinhart C D. Second-order accurate particle image velocimetry. Exp Fluids, 2001, 31: 258–268

    Article  Google Scholar 

  31. Lecordier B, Westerweel J. The EUROPIV synthetic image generator (SIG). In: Proceedings of Particle Image Velocimetry: Recent Improvements. Berlin: Springer Berlin Heidelberg, 2004. 145–161

    Google Scholar 

  32. Shen J Q, Pan C, Wang J J. Accurate measurement of wall skin friction by single-pixel ensemble correlation. Sci China-Phys Mech Astron, 2014, 57: 1352–1362

    Article  ADS  Google Scholar 

  33. Kähler C J, Scharnowski S, Cierpka C. On the uncertainty of digital PIV and PTV near walls. Exp Fluids, 2012, 52: 1641–1656

    Article  Google Scholar 

  34. Le Besnerais G, Champagnat F. Dense optical flow by iterative local window registration. In: Proceedings of 2005 International Conference on Image Processing (ICIP), Paris, 2005, 1–5: 493–496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinJun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Xue, D., Xu, Y. et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci. China Phys. Mech. Astron. 58, 104704 (2015). https://doi.org/10.1007/s11433-015-5719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5719-y

Keywords

Navigation