Trace of Chemical Reactions Accompanied with Arrhenius Energy on Ternary Hybridity Nanofluid Past a Wedge
<p>(<b>a</b>). Implementations of nanofluid. (<b>b</b>) Geometry of the fluid flow.</p> "> Figure 2
<p>(<b>a</b>). Tri-hybrid nanofluid. (<b>b</b>). Comparison of hybrid and trihybrid nanofluids.</p> "> Figure 2 Cont.
<p>(<b>a</b>). Tri-hybrid nanofluid. (<b>b</b>). Comparison of hybrid and trihybrid nanofluids.</p> "> Figure 3
<p>(<b>a</b>). Novel effects. (<b>b</b>). Transformation step. (<b>c</b>). Numerical process. (<b>d</b>). Computed quantities.</p> "> Figure 3 Cont.
<p>(<b>a</b>). Novel effects. (<b>b</b>). Transformation step. (<b>c</b>). Numerical process. (<b>d</b>). Computed quantities.</p> "> Figure 4
<p>Activity change of <math display="inline"><semantics> <mi>A</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 5
<p>Activity change of <math display="inline"><semantics> <mi>B</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 6
<p>Activity change of <math display="inline"><semantics> <mi>m</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 7
<p>Activity change of <math display="inline"><semantics> <mi>α</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 8
<p>Activity change of <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 9
<p>Activity change of <math display="inline"><semantics> <mi>λ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 10
<p>Activity change of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 11
<p>Activity change of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 12
<p>Activity change of <math display="inline"><semantics> <mi>Ω</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 13
<p>Activity change of <math display="inline"><semantics> <mi>Ω</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 14
<p>Activity change of <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 15
<p>Activity change of <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>d</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 16
<p>Activity change of <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 17
<p>Activity change of <math display="inline"><semantics> <mi>Q</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 18
<p>Activity change of <math display="inline"><semantics> <mi>n</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 19
<p>Activity change of <math display="inline"><semantics> <mi>δ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 20
<p>Activity change of <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>c</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 21
<p>Activity change of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 22
<p>Activity change of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 23
<p>Activity change of <math display="inline"><semantics> <mi>Q</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 24
<p>Activity change of <math display="inline"><semantics> <mi>Q</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 25
<p>Influence of <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on skin friction, heat transfer, and mass transfer rates.</p> "> Figure 26
<p>Influence of <math display="inline"><semantics> <mi>λ</mi> </semantics></math> on skin friction, heat transfer, and mass transfer rate.</p> "> Figure 27
<p>Influence of <math display="inline"><semantics> <mi>N</mi> </semantics></math> on skin friction, heat transfer, and mass transfer rate.</p> "> Figure 28
<p>Influence of <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on skin friction, heat transfer, and mass transfer rate.</p> ">
Abstract
:Highlights
- The problem of 2-D Prandtl nanofluid past a moving wedge is investigated in detail;
- Tri-hybrid nanoparticles are considered here;
- Heat and mass transmission evaluations are conducted in the presence of endothermic/exothermic chemical reactions;
- The moving wedge is considered;
- LobattoIIIA scheme is implemented for the numerical solution of modeled PDEs.
Abstract
1. Introduction
2. Mathematical Formulation
3. Physical Quantities
4. Solution Methodology
5. Step-By-Step Graphical Detail of the Present Problem
5.1. Problem Formulation
5.2. Modelling
5.3. Numerical Process
5.4. Numerical Results
5.5. Analysis
6. Results and Discussions
7. Testing of Code
8. Concluding Remarks
- The addition of tri-hybrid nanomolecules in the standard liquid boosts the thermal performance of the liquid which eventually lessens the fluid viscosity;
- The amplification in the fluid parameter devalues the liquid viscidness and upsurges the liquid rapidity.
- A larger wedge brings about magnification in fluid viscosity contributing to viscous forces dominating the shear forces and depreciating the velocity field.
- Wedge angle parameter α brings about a decrement in fluid velocity. Amplification in α provides resistance to the fluid which helps the fluid to become denser and more viscous. As a result, the velocity field diminishes.
- Buoyancy forces dominate the viscous forces by virtue of magnification in the buoyancy parameter . Positive variation in buoyancy parameter amplifies the fluid density which depreciates the Grashoff number Gr and the fluid velocity.
- Thermophoresis diffusion phenomenon migrates the hot fluid molecules from the warm region to the coldish zone. As a result, the temperature field increases.
- In the case of exothermic reaction , heat is released by a system that gives a reduction in the liquid temperature. Examples are fuel combustion, heat pumps, heat engines, refrigerators, etc. Heat is absorbed by the fluid in the case of exothermic reaction . Examples are absorption chillers, ammonia absorption refrigeration systems, photosynthesis, etc.
- Chemical reaction takes place which enhances the heat transfer rate and . Physical examples are the combustion of fuels, detonation of explosives, reaction of acids with metals, etc.
- Amplification in thermal conductivity amplifies the temperature. That is why the insertion of copper nanoparticles instead of any other sort of nanoparticles delivers more heat because they have more thermal conductivity than other metallic nanoparticles.
- Positive variation in activation energy amplifies the fluid concentration and depreciates the thermal performance of the fluid. Enzyme reactions are a good example of activation energy.
- It is noted that an augmentation in thermal conductivity , thermal radiation , thermophoresis parameter , endothermic/exothermic reaction , and fitted rate n escalate the heat transmission rate, while the opposite behavior is reported in the status of keeping factors such as Prandtl number , , Schmidt number , Brownian parameter , activation energy , temperature difference .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
activation energy | temperature difference | ||
power law indicator | thermophoretic diffusion | ||
Brownian diffusion | elastic parameter | ||
buoyancy parameter | Grashof quantity | ||
thermal conductivity | Frictional force | ||
reaction rate | radiative variable | ||
Prandtl number | radiant heat fluxing | ||
Sustentation factor | Prandtl fluid parameter | ||
buoyancy ratio parameter | thermal diffusion | ||
consistency | thermal conducting | ||
specific heat | absorbed factor | ||
Stefan-Boltzmann value |
References
- Ahmad, S.; Nadeem, S. Analysis of activation energy and its impact on hybrid nanofluid in the presence of Hall and ion slip currents. Appl. Nanosci. 2020, 10, 5315–5330. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.U.; Tlili, I.; Awais, M.; Shadloo, M.S. Significance of bioconvective and thermally dissipation flow of viscoelastic nanoparticles with activation energy features: Novel biofuels significance. Symmetry 2020, 12, 214. [Google Scholar] [CrossRef]
- Owhaib, W.; Basavarajappa, M.; Al-Kouz, W. Radiation effects on 3D rotating flow of Cu-water nanoliquid with viscous heating and prescribed heat flux using modified Buongiorno model. Sci. Rep. 2021, 11, 20669. [Google Scholar] [CrossRef] [PubMed]
- Rosca, N.C.; Rosca, A.V.; Aly, E.H.; Pop, I. Flow and Heat Transfer Past a Stretching/Shrinking Sheet Using Modified Buongiorno Nanoliquid Model. Mathematics 2021, 9, 3047. [Google Scholar] [CrossRef]
- Rana, P.; Gupta, G. Numerical and sensitivity computations of three-dimensional flow and heat transfer of nanoliquid over a wedge using modified Buongiorno model. Comput. Math. Appl. 2021, 101, 51–62. [Google Scholar] [CrossRef]
- Mousavi, S.; Esmaeilzadeh, F.; Wang, X. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid. J. Therm. Anal. Calorim. 2019, 137, 879–901. [Google Scholar] [CrossRef]
- Dezfulizadeh, A.; Aghaei, A.; Joshaghani, A.H.; Najafizadeh, M.M. An experimental study on dynamic viscosity and thermal conductivity of water-Cu-SiO2-MWCNT ternary hybrid nanofluid and the development of practical correlations. Powder Technol. 2021, 389, 215–234. [Google Scholar] [CrossRef]
- Munjam, S.R.; Gangadhar, K.; Seshadri, R.; Rajeswar, M. Novel technique MDDIM solutions of MHD flow and radiative Prandtl-Eyring fluid over a stretching sheet with convective heating. Int. J. Ambient. Energy 2021, 1–10. [Google Scholar] [CrossRef]
- Ullah, I.; Ali, R.; Nawab, H.; Abdussatar; UdDin, I.; Muhammad, T.; Khan, I.; Nisar, K.S. Theoretical analysis of activation energy effect on Prandtl–Eyring nanoliquid flow subject to melting condition. J. Non-Equil. Thermodyn. 2022, 47, 1–12. [Google Scholar] [CrossRef]
- Qureshi, M.A. A case study of MHD driven Prandtl-Eyring hybrid nanofluid flow over a stretching sheet with thermal jump conditions. Case Stud. Therm. Eng. 2021, 28, 101581. [Google Scholar] [CrossRef]
- Shah, S.Z.; Wahab, H.A.; Ayub, A.; Sabir, Z.; Haider, A.; Shah, S.L. Higher order chemical process with heat transport of magnetized cross nanofluid over wedge geometry. Heat Transf. 2021, 50, 3196–3219. [Google Scholar] [CrossRef]
- Ayub, A.; Darvesh, A.; Altamirano, G.C.; Sabir, Z. Nanoscale energy transport of inclined magnetized 3D hybrid nanofluid with Lobatto IIIA scheme. Heat Transf. 2021, 50, 6465–6490. [Google Scholar] [CrossRef]
- Al-Hossainy, A.F.; Eid, M.R. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/ZrO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf. Interfaces 2021, 23, 100971. [Google Scholar] [CrossRef]
- Ayub, A.; Sabir, Z.; Shah, S.Z.H.; Wahab, H.A.; Sadat, R.; Ali, M.R. Effects of homogeneous-heterogeneous and Lorentz forces on 3-D radiative magnetized cross nanofluid using two rotating disks. Int. Commun. Heat Mass Transf. 2022, 130, 105778. [Google Scholar] [CrossRef]
- Ali, L.; Ali, B.; Liu, X.; Iqbal, T.; Zulqarnain, R.M.; Javid, M. A comparative study of unsteady MHD Falkner–Skan wedge flow for non-Newtonian nanofluids considering thermal radiation and activation energy. Chin. J. Phys. 2022, 77, 1625–1638. [Google Scholar] [CrossRef]
- Ayub, A.; Sabir, Z.; Shah, S.Z.H.; Mahmoud, S.; Algarni, A.; Sadat, R.; Ali, M.R. Aspects of infinite shear rate viscosity and heat transport of magnetized Carreau nanofluid. Eur. Phys. J. Plus 2022, 137, 247. [Google Scholar] [CrossRef]
- Neethu, T.; Sabu, A.; Mathew, A.; Wakif, A.; Areekara, S. Multiple linear regression on bioconvective MHD hybrid nanofluid flow past an exponential stretching sheet with radiation and dissipation effects. Int. Commun. Heat Mass Transf. 2022, 135, 106115. [Google Scholar] [CrossRef]
- Shah, S.Z.H.; Fathurrochman, I.; Ayub, A.; Altamirano, G.C.; Rizwan, A.; Núñez, R.A.S.; Sabir, Z.; Yeskindirova, M. Inclined magnetized and energy transportation aspect of infinite shear rate viscosity model of Carreau nanofluid with multiple features over wedge geometry. Heat Transf. 2022, 51, 1622–1648. [Google Scholar] [CrossRef]
- Shah, S.L.; Ayub, A.; Dehraj, S.; Wahab, H.A.; Sagayam, K.M.; Ali, M.R.; Sadat, R.; Sabir, Z. Magnetic dipole aspect of binary chemical reactive Cross nanofluid and heat transport over composite cylindrical panels. Waves Random Complex Media 2022, 1–24. [Google Scholar] [CrossRef]
- Sandeep, N.; Ranjana, B.; Samrat, S.; Ashwinkumar, G. Impact of nonlinear radiation on magnetohydrodynamic flow of hybrid nanofluid with heat source effect, P.I. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 1616–1627. [Google Scholar] [CrossRef]
- Ellahi, R.; Zeeshan, A.; Hussain, F.; Asadollahi, A. Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry 2019, 11, 276. [Google Scholar] [CrossRef]
- Khan, A.A.; Bukhari, S.R.; Marin, M.; Ellahi, R. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transf. Res. 2019, 50, 1061–1080. [Google Scholar] [CrossRef]
- Vijaya, N.; Arifuzzaman, S.; Sai, N.R.; Rao, M. Analysis of Arrhenius activation energy in electrically conducting Casson fluid flow induced due to permeable elongated sheet with chemical reaction and viscous dissipation. Front. Heat Mass Transf. 2020, 15, 26. [Google Scholar] [CrossRef]
- Ali, Z.; Zeeshan, A.; Bhatti, M.; Hobiny, A.; Saeed, T. Insight into the dynamics of Oldroyd-B fluid over an upper horizontal surface of a paraboloid of revolution subject to chemical reaction dependent on the first-order activation energy. Arab. J. Sci. Eng. 2021, 46, 6039–6048. [Google Scholar] [CrossRef]
- Zaib, A.; Haq, R.U.; Sheikholeslami, M.; Khan, U. Numerical analysis of effective Prandtl model on mixed convection flow of γAl2O3–H2O nanoliquids with micropolar liquid driven through wedge. Phys. Scr. 2020, 95, 035005. [Google Scholar] [CrossRef]
- Habib, D.; Salamat, N.; Abdal, S.H.S.; Ali, B. Numerical investigation for MHD Prandtl nanofluid transportation due to a moving wedge: Keller box approach. Int. Commun. Heat Mass Transf. 2022, 35, 106141. [Google Scholar] [CrossRef]
- Shah, Z.; Kumam, P.; Deebani, W. Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. Sci. Rep. 2020, 10, 4402. [Google Scholar] [CrossRef]
- Bhatti, M.; Michaelides, E.E. Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J. Therm. Anal. Calorim. 2021, 143, 2029–2038. [Google Scholar] [CrossRef]
- Gowda, R.J.P.; Kumar, R.N.; Jyothi, A.M.; Prasannakumara, B.C.; Sarris, I.E. Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-Newtonian nanofluid. Processes 2021, 9, 702. [Google Scholar] [CrossRef]
- Ullah, Z.; Ullah, I.; Zaman, G.; Sun, T.C. A numerical approach to interpret melting and activation energy phenomenon on the magnetized transient flow of Prandtl–Eyring fluid with the application of Cattaneo–Christov theory. Waves Random Complex Media 2022, 1–21. [Google Scholar] [CrossRef]
- Habib, D.; Salamat, N.; Abdal, S.; Siddique, I.; Ang, M.C.; Ahmadian, A. On the role of bioconvection and activation energy for time dependent nanofluid slip transpiration due to extenDing domain in the presence of electric and magnetic fields. Ain Shams Eng. J. 2022, 13, 101519. [Google Scholar] [CrossRef]
- Asogwa, K.K.; Alsulami, M.; Prasannakumara, B.; Muhammad, T. Double diffusive convection and cross diffusion effects on Casson fluid over a Lorentz force driven Riga plate in a porous medium with heat sink: An analytical approach. Int. Commun. Heat Mass Transf. 2022, 131, 105761. [Google Scholar] [CrossRef]
- Ali, U.; Rehman, K.U.; Malik, M.; Zehra, I. Thermal aspects of Carreau fluid around a wedge. Case Stud. Therm. Eng. 2018, 12, 462–469. [Google Scholar] [CrossRef]
- Lyu, H.-G.; Deng, R.; Sun, P.-N.; Miao, J.-M. Study on the wedge penetrating fluid interfaces characterized by different density-ratios: Numerical investigations with a multi-phase SPH model. Ocean Eng. 2021, 237, 109538. [Google Scholar] [CrossRef]
- Hussain, M.; Ghaffar, A.; Ali, A.; Shahzad, A.; Nisar, K.S.; Alharthi, M.; Jamshed, W. MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition. Alex. Eng. J. 2021, 60, 5473–5483. [Google Scholar] [CrossRef]
- Waqas, H.; Farooq, U.; Bhatti, M.M.; Hussain, S. Magnetized bioconvection flow of Sutterby fluid characterized by the suspension of nanoparticles across a wedge with activation energy. ZAMM J. Appl. Math. Mech. 2021, 101, e202000349. [Google Scholar] [CrossRef]
- Yih, K. Uniform suction/blowing effect on forced convection about a wedge: Uniform heat flux. Acta Mech. 1998, 128, 173–181. [Google Scholar] [CrossRef]
- Yacob, N.A.; Ishak, A.; Pop, I. Falkner–Skan problem for a static or moving wedge in nanofluids. Int. J. Therm. Sci. 2011, 50, 133–139. [Google Scholar] [CrossRef]
- White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Ali, H.; Khan, M. Impact of heat transfer analysis on Carreau fluid flow past a static/moving wedge. Therm. Sci. 2018, 22, 809–820. [Google Scholar] [CrossRef]
- Jamshed, W.; Aziz, A. Entropy Analysis of TiO2-Cu/EG Casson Hybrid Nanofluid via Cattaneo-Christov Heat Flux Model. Appl. Nanosci. 2018, 8, 1–14. [Google Scholar]
- Jamshed, W.; Nisar, K.S. Computational single phase comparative study of Williamson nanofluid in parabolic trough solar collector via Keller box method. Int. J. Energy Res. 2021, 45, 10696–10718. [Google Scholar] [CrossRef]
- Jamshed, W.; Devi, S.U.; Nisar, K.S. Single phase-based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor. Phys. Scr. 2021, 96, 065202. [Google Scholar] [CrossRef]
- Jamshed, W.; Nisar, K.S.; Ibrahim, R.W.; Shahzad, F.; Eid, M.R. Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: A solar thermal application. J. Mater. Res. Technol. 2021, 14, 985–1006. [Google Scholar] [CrossRef]
- Akram, M.; Jamshed, W.; Goud, B.S.; Pasha, A.A.; Sajid, T.; Rahman, M.M.; Arshad, M.; Weera, W. Irregular heat source impact on Carreau nanofluid flowing via exponential expanDing cylinder: A thermal case study. Case Stud. Therm. Eng. 2022, 36, 102190. [Google Scholar] [CrossRef]
- Shahzad, F.; Jamshed, W.; Ahmad, A.; Safdar, R.; Alam, M.M.; Ullah, I. Efficiency evaluation of solar water-pump using nanofluids in parabolic trough solar collector: 2nd order convergent approach. Waves Random Complex Media 2022, 1–37. [Google Scholar] [CrossRef]
- Batool, S.; Rasool, G.; Alshammari, N.; Khan, I.; Kaneez, H.; Hamadneh, N. Numerical analysis of heat and mass transfer in micropolar nanofluids flow through lid driven cavity: Finite volume approach. Case Stud. Therm. Eng. 2022, 37, 102233. [Google Scholar] [CrossRef]
- Shafiq, A.; Mebarek-OuDina, F.; Sindhu, T.N.; Rasool, G. Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM. Sci. Iran. 2022, 29, 1236–1249. [Google Scholar]
- Rasool, G.; Saeed, A.M.; Lare, A.I.; Abderrahmane, A.; Guedri, K.; Vaidya, H.; Marzouki, R. Darcy-Forchheimer flow of water conveying multi-walled carbon nanoparticles through a vertical cleveland Z-staggered cavity subject to entropy generation. Micromachines 2022, 13, 744. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Hussain, S.; Zaydan, M.; Wakif, A.; Chamkha, A.J.; Bhutta, M.S. Significance of Rosseland’s radiative process on reactive Maxwell nanofluid flows over an isothermally heated stretching sheet in the presence of Darcy–Forchheimer and Lorentz forces: Towards a new perspective on Buongiorno’s model. Micromachines 2022, 13, 368. [Google Scholar] [CrossRef]
Properties | Ethylene Glycol (EG) | Al2O3 | TiO2 | SiO2 |
---|---|---|---|---|
1115 | 6310 | 4250 | 2270 | |
4179 | 773 | 690 | 765 | |
0.253 | 32.9 | 8.953 | 1.4013 |
Ref. [38] | Ref. [39] | Ref. [40] | Present Results | |
---|---|---|---|---|
0.0 | 0.46960 | 0.46960 | 0.46961 | 0.46970 |
0.1 | 0.65510 | 0.65511 | 0.65509 | 0.65510 |
0.2 | 0.80210 | 0.80210 | 0.80211 | 0.80221 |
0.3 | 0.92760 | 0.92760 | 0.92771 | 0.92780 |
0.5 | 1.03850 | 1.03860 | 1.03892 | 1.03911 |
1.0 | 1.13250 | 1.23260 | 1.23261 | 1.23282 |
Parameters | Skin Friction |
---|---|
6.03433 | |
6.03418 | |
6.03406 | |
6.17675 | |
7.33591 | |
8.26719 | |
7.89913 | |
9.66534 | |
11.45915 | |
7.28419 | |
7.35732 | |
7.68177 |
1 | 1 | 1.7 | 1 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 4.9383 | 2.3428 |
2 | 5.9218 | 2.3437 | ||||||||||
3 | 6.9050 | 2.3448 | ||||||||||
4 | 7.8888 | 2.3458 | ||||||||||
2 | 4.1025 | 3.3490 | ||||||||||
3 | 5.7546 | 3.3534 | ||||||||||
4 | 6.3993 | 3.3967 | ||||||||||
3 | 3.0691 | 2.3342 | ||||||||||
4 | 3.5236 | 1.9310 | ||||||||||
5 | 4.1573 | 1.3294 | ||||||||||
2 | 4.8302 | 3.3665 | ||||||||||
3 | 5.7312 | 2.3740 | ||||||||||
4 | 6.6413 | 1.3774 | ||||||||||
1 | 3.8959 | 2.3150 | ||||||||||
1.5 | 2.8556 | 1.9948 | ||||||||||
2 | 1.8173 | 1.2814 | ||||||||||
0.3 | 2.9229 | 2.3443 | ||||||||||
0.5 | 1.9074 | 2.3459 | ||||||||||
0.7 | 0.8920 | 2.3475 | ||||||||||
0.3 | 3.9246 | 2.3110 | ||||||||||
0.5 | 2.9114 | 2.2779 | ||||||||||
0.7 | 1.8987 | 2.2496 | ||||||||||
0.3 | 3.9387 | 2.3437 | ||||||||||
0.5 | 2.9391 | 3.3545 | ||||||||||
0.7 | 1.9395 | 4.4454 | ||||||||||
0.3 | 4.9384 | 3.3460 | ||||||||||
0.5 | 3.9400 | 2.3528 | ||||||||||
0.7 | 2.9596 | 1.3776 | ||||||||||
0.3 | 6.9396 | 3.3457 | ||||||||||
0.5 | 5.9406 | 4.3480 | ||||||||||
0.7 | 4.9415 | 5.3500 | ||||||||||
1 | 2.9262 | 4.4540 | ||||||||||
1.5 | 2.8827 | 3.5228 | ||||||||||
2 | 2.7218 | 2.5726 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajid, T.; Ayub, A.; Shah, S.Z.H.; Jamshed, W.; Eid, M.R.; El Din, E.S.M.T.; Irfan, R.; Hussain, S.M. Trace of Chemical Reactions Accompanied with Arrhenius Energy on Ternary Hybridity Nanofluid Past a Wedge. Symmetry 2022, 14, 1850. https://doi.org/10.3390/sym14091850
Sajid T, Ayub A, Shah SZH, Jamshed W, Eid MR, El Din ESMT, Irfan R, Hussain SM. Trace of Chemical Reactions Accompanied with Arrhenius Energy on Ternary Hybridity Nanofluid Past a Wedge. Symmetry. 2022; 14(9):1850. https://doi.org/10.3390/sym14091850
Chicago/Turabian StyleSajid, Tanveer, Assad Ayub, Syed Zahir Hussain Shah, Wasim Jamshed, Mohamed R. Eid, El Sayed M. Tag El Din, Rida Irfan, and Syed M. Hussain. 2022. "Trace of Chemical Reactions Accompanied with Arrhenius Energy on Ternary Hybridity Nanofluid Past a Wedge" Symmetry 14, no. 9: 1850. https://doi.org/10.3390/sym14091850
APA StyleSajid, T., Ayub, A., Shah, S. Z. H., Jamshed, W., Eid, M. R., El Din, E. S. M. T., Irfan, R., & Hussain, S. M. (2022). Trace of Chemical Reactions Accompanied with Arrhenius Energy on Ternary Hybridity Nanofluid Past a Wedge. Symmetry, 14(9), 1850. https://doi.org/10.3390/sym14091850