Coupling Degree between the Demand and Supply of Bus Services at Stops: A Density-Based Approach
<p>The main urban area of Wuhan, China.</p> "> Figure 2
<p>Images of the CDI function. (<b>a</b>) Overview; (<b>b</b>) Front view; (<b>c</b>) Right view; (<b>d</b>) Top view.</p> "> Figure 3
<p>KDE maps of the demand and supply of bus services. (<b>a</b>) Demand; (<b>b</b>) Supply.</p> "> Figure 4
<p>Moran scatterplot and corresponding classification results of bus stops. (<b>a</b>) Moran scatterplot of the jobs-housing activity distribution and bus services distribution; (<b>b</b>) Classification results of bus stops based on the Moran scatterplot.</p> "> Figure 5
<p>Local spatial clusters of bus stops based on two significance filters. (<b>a</b>) A significance level of 0.1; (<b>b</b>) A significance level of 0.01.</p> "> Figure 6
<p>A visual representative method combining the Moran scatterplot and CDI. (<b>a</b>) Overview; (<b>b</b>) Front view; (<b>c</b>) Right view; (<b>d</b>) Top view. “①”—Moran scatterplot.</p> "> Figure 7
<p>The CDI subclassification results. (<b>a</b>) The subclassification result for Moran scatterplot (<b>b</b>) The cor-responding subclassification results of bus stops.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Study Area and Data
3.1. Study Area
3.2. Data Collection and Preprocessing
4. Methodology
4.1. Generating the Density of Jobs-Housing Locations
4.2. Detecting the Spatial Relationship between Demand and Supply
4.3. Coupling Degree Index (CDI)
5. Results
5.1. Spatial Patterns of the Demand and Supply of Bus Services
5.2. Spatial Association between Demand and Supply at Bus Stops
5.3. Identifying Bus Stops with Dismatched Demand and Supply
5.4. Coupling Degree Index of Each Bus Stop
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, A.T. Strategic analysis of public transport coverage. Socio-Econ. Plan. Sci. 2001, 35, 175–188. [Google Scholar] [CrossRef]
- AlRukaibi, F.; AlKheder, S. Optimization of bus stop stations in Kuwait. Sustain. Cities Soc. 2019, 44, 726–738. [Google Scholar] [CrossRef]
- Cervero, R.; Kang, C.D. Bus rapid transit impacts on land uses and land values in Seoul, Korea. Transp. Policy 2011, 18, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Liu, X. A Hierarchical Approach to Optimizing Bus Stop Distribution in Large and Fast Developing Cities. ISPRS Int. J. Geo-Inf. 2014, 3, 554–564. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.T.; Davis, R.; Stimson, R.J.; Ferreira, L. Public transportation access. Transp. Res. Part D Transp. Environ. 1998, 3, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Langford, M.; Fry, R.; Higgs, G. Measuring transit system accessibility using a modified two-step floating catchment technique. Int. J. Geogr. Inf. Sci. 2012, 26, 193–214. [Google Scholar] [CrossRef]
- Wirasinghe, S.C. Nearly optimal parameters for a rail/feeder-bus system on a rectangular grid. Transp. Res. Part A Gen. 1980, 14, 33–40. [Google Scholar] [CrossRef]
- Currie, G. Quantifying spatial gaps in public transport supply based on social needs. J. Transp. Geogr. 2010, 18, 31–41. [Google Scholar] [CrossRef]
- Michael, A.; Cecilia, J.; Currie, G. Exploring public transport equity between separate disadvantaged cohorts: A case study in Perth, Australia. J. Transp. Geogr. 2015, 43, 111–122. [Google Scholar] [CrossRef]
- Karner, A. Assessing public transit service equity using route-level accessibility measures and public data. J. Transp. Geogr. 2018, 67, 24–32. [Google Scholar] [CrossRef]
- Chen, X.; Jia, P.; Chen, X. A comparative analysis of accessibility measures by the two-step floating catchment area (2SFCA) method. Int. J. Geogr. Inf. Sci. 2019, 33, 1739–1758. [Google Scholar] [CrossRef]
- Langford, M.; Higgs, G.; Fry, R. Using floating catchment analysis (FCA) techniques to examine intra-urban variations in accessibility to public transport opportunities: The example of Cardiff, Wales. J. Transp. Geogr. 2012, 25, 1–14. [Google Scholar] [CrossRef]
- Demetsky, M.J.; Lin, B.B. Bus Stop Location and Design. J. Transp. Eng. 1982, 108, 313–327. [Google Scholar] [CrossRef]
- Foda, M.; Osman, A. Using GIS for Measuring Transit Stop Accessibility Considering Actual Pedestrian Road Network. J. Public Transp. 2010, 13, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Golub, A.; Martens, K. Using principles of justice to assess the modal equity of regional transportation plans. J. Transp. Geogr. 2014, 41, 10–20. [Google Scholar] [CrossRef]
- Merlin, L.A.; Hu, L. Does competition matter in measures of job accessibility? Explaining employment in Los Angeles. J. Transp. Geogr. 2017, 64, 77–88. [Google Scholar] [CrossRef]
- Wu, B.; Hine, J. A PTAL approach to measuring changes in bus service accessibility. Transp. Policy 2003, 10, 307–320. [Google Scholar] [CrossRef]
- Martens, K. Justice in transport as justice in accessibility: Applying Walzer’s “Spheres of Justice” to the transport sector. Transportation 2012, 39, 1035–1053. [Google Scholar] [CrossRef] [Green Version]
- Tirachini, A. The economics and engineering of bus stops: Spacing, design and congestion. Transp. Res. Part A Policy Pract. 2014, 59, 37–57. [Google Scholar] [CrossRef]
- Avi, A.; Butcher, M.; Wang, L. Optimization of bus stop placement for routes on uneven topography. Transp. Res. Part B 2015, 74, 40–61. [Google Scholar] [CrossRef]
- Ibeas, Á.; Olio, L.; Alonso, B.; Sainz, O. Optimizing bus stop spacing in urban areas. Transp. Res. Part E 2010, 46, 446–458. [Google Scholar] [CrossRef]
- Li, H.; Bertini, R.L. Assessing a Model for Optimal Bus Stop Spacing with High-Resolution Archived Stop-Level Data. Transp. Res. Rec. 2009, 2111, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Mamun, S.A.; Lownes, N.E. Access and Connectivity Trade-Offs in Transit Stop Location. Transp. Res. Rec. 2014, 2466, 1–11. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Zhu, S.; Wang, W. Design of limited-stop bus service with capacity constraint and stochastic travel time. Transp. Res. Part E Logist. Transp. Rev. 2015, 83, 1–15. [Google Scholar] [CrossRef]
- Murray, A.T. A Coverage Model for Improving Public Transit System Accessibility and Expanding Access. Ann. Oper. Res. 2003, 123, 143–156. [Google Scholar] [CrossRef]
- Murray, A.T.; Wu, X. Accessibility tradeoffs in public transit planning. J. Geogr. Syst. 2003, 5, 93–107. [Google Scholar] [CrossRef]
- Delmelle, E.M.; Li, S.; Murray, A.T. Identifying bus stop redundancy: A gis-based spatial optimization approach. Comput. Environ. Urban Syst. 2012, 36, 445–455. [Google Scholar] [CrossRef]
- Lwin, K.K.; Murayama, Y. A GIS Approach to Estimation of Building Population for Micro-spatial Analysis. Trans. Gis 2009, 13, 401–414. [Google Scholar] [CrossRef]
- Delbosc, A.; Currie, G. Using Lorenz curves to assess public transport equity. J. Transp. Geogr. 2011, 19, 1252–1259. [Google Scholar] [CrossRef]
- Chainey, S.; Tompson, L.; Uhlig, S. The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime. Secur. J. 2008, 21, 4–28. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Z.; Zhang, H.; Zhao, J.; Yu, S.; Du, W. Spatial distribution of grassland fires at the regional scale based on the MODIS active fire products. Int. J. Wildl. Fire 2017, 26, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Silverman, B. Density Estimation For Statistics And Data Analysis; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Gatrell, A.C.; Bailey, T.C.; Diggle, P.J.; Rowlingson, B. Spatial point pattern analysis and its application in geographical epidemiology. Trans. Inst. Br. Geogr. 1996, 21, 256–274. [Google Scholar] [CrossRef]
- Kimpel, T.J.; Dueker, K.J.; El-Geneidy, A.M. Using GIS to Measure the Effect of Overlapping Service Areas on Passenger Boardings at Bus Stops. URISA J. 2007, 19, 5–11. [Google Scholar]
- Zhao, F.; Chow, L.-F.; Li, M.-T.; Ubaka, I.; Gan, A. Forecasting Transit Walk Accessibility: Regression Model Alternative to Buffer Method. Transp. Res. Rec. 2003, 1835, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L. The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association. In Spatial Analytical Perspectives on GIS in Environmental and Socio-Economic Sciences; Fischer, M., Scholten, H., Unwin, D., Eds.; Taylor & Francis: London, UK, 1996; Volume 4, pp. 111–125. [Google Scholar]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Qian, Q.; Wu, Z.; Zheng, Z.; Huang, Q. The coupling relationship between construction land expansion and high-temperature area expansion in China’s three major urban agglomerations. Int. J. Remote Sens. 2019, 40, 1–20. [Google Scholar] [CrossRef]
- Cong, X. Expression and Mathematical Property of Coupling Model, and Its Misuse in Geographical Science. Econ. Geogr. 2019, 39, 18–25. [Google Scholar] [CrossRef]
- Ping, J.L.; Green, C.J.; Zartman, R.E.; Bronson, K.F. Exploring spatial dependence of cotton yield using global and local autocorrelation statistics. Field Crop. Res. 2004, 89, 219–236. [Google Scholar] [CrossRef]
- De Cea, J.; Fernández, E. Transit assignment for congested public transport systems: An equilibrium model. Transp. Sci. 1993, 27, 133–147. [Google Scholar] [CrossRef]
- Wu, W.; Liu, R.; Jin, W.; Ma, C. Stochastic bus schedule coordination considering demand assignment and rerouting of passengers. Transp. Res. Part B 2019, 121, 275–303. [Google Scholar] [CrossRef]
- Huang, Z.; Ming, Z.; Liu, X. Estimating light-rail transit peak-hour boarding based on accessibility at station and route levels in Wuhan, China. Transp. Plan. Technol. 2017, 40, 624–639. [Google Scholar] [CrossRef]
- Currie, G. Gap Analysis of Public Transport Needs: Measuring Spatial Distribution of Public Transport Needs and Identifying Gaps in the Quality of Public Transport Provision. Transp. Res. Rec. 2004, 1895, 137–146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Huang, Z.; Xia, J.; Li, W.; Zhang, Y. Coupling Degree between the Demand and Supply of Bus Services at Stops: A Density-Based Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 173. https://doi.org/10.3390/ijgi10030173
Li B, Huang Z, Xia J, Li W, Zhang Y. Coupling Degree between the Demand and Supply of Bus Services at Stops: A Density-Based Approach. ISPRS International Journal of Geo-Information. 2021; 10(3):173. https://doi.org/10.3390/ijgi10030173
Chicago/Turabian StyleLi, Bowen, Zhengdong Huang, Jizhe Xia, Wenshu Li, and Ying Zhang. 2021. "Coupling Degree between the Demand and Supply of Bus Services at Stops: A Density-Based Approach" ISPRS International Journal of Geo-Information 10, no. 3: 173. https://doi.org/10.3390/ijgi10030173
APA StyleLi, B., Huang, Z., Xia, J., Li, W., & Zhang, Y. (2021). Coupling Degree between the Demand and Supply of Bus Services at Stops: A Density-Based Approach. ISPRS International Journal of Geo-Information, 10(3), 173. https://doi.org/10.3390/ijgi10030173