Stable, Spherical and Thin Fluid Shells †
<p>We see how the stability regions (light blue region) vary for two cases of exterior masses of the shell. Each of the different colored curves correspond to different values of the surface density <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>0</mn> </msub> <mo>≡</mo> <msub> <mi>σ</mi> <mrow> <mn>0</mn> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <mo>Δ</mo> <mi>σ</mi> <mo>></mo> <msub> <mi>σ</mi> <mrow> <mn>0</mn> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>. The left panel corresponds to <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>1.05</mn> </mrow> </semantics></math> and the right to <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The potential (<a href="#FD15-psf-02-00024" class="html-disp-formula">15</a>) for the values of <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mo>Λ</mo> <mo>)</mo> </mrow> </semantics></math> that correspond to the points highlighted in <a href="#psf-02-00024-f001" class="html-fig">Figure 1</a>. We see that the red point of <a href="#psf-02-00024-f001" class="html-fig">Figure 1</a> does not correspond to a stable shell solution.</p> "> Figure 3
<p>A random Monte Carlo selection of points that satisfy the shell existence and stability conditions (<a href="#FD18-psf-02-00024" class="html-disp-formula">18</a>)–(<a href="#FD21-psf-02-00024" class="html-disp-formula">21</a>) for <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>. The orange line represents the limit of the region, which is clearly respected by all the randomly selected points, which span the stability region.</p> ">
Abstract
:1. Introduction
- Is it possible to construct stable, thin, fluid shells within an SRAdS metric?
- If so, which are the specific, general conditions that have to be met in order to achieve stability?
- What are the numerical metric parameter ranges that enable stability, considering the conditions induced by the different equations of state?
- How does the radius R of the stable shell change as a function of the metric parameters within the allowed numerical space?
2. Existence and Stability of Thin Shell Solutions
3. Specific Cases of Shell Stability
3.1. Shell with Vacuum Fluid Equation of State
3.2. Stiff Matter and Pressurless Dust Fluid Shells
4. Conclusions
Funding
References
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B 1966, 44S10, 1. [Google Scholar] [CrossRef]
- Mazur, P.O.; Mottola, E. Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. USA 2004, 101, 9545–9550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M.; Wiltshire, D.L. Stable gravastars: An Alternative to black holes? Class. Quantum Gravity 2004, 21, 1135–1152. [Google Scholar] [CrossRef]
- Lobo, F.S. Stable dark energy stars. Class. Quantum Gravity 2006, 23, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- DeBenedictis, A.; Horvat, D.; Ilijic, S.; Kloster, S.; Viswanathan, K. Gravastar solutions with continuous pressures and equation of state. Class. Quantum Gravity 2006, 23, 2303–2316. [Google Scholar] [CrossRef] [Green Version]
- Ansoldi, S. Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources. In Proceedings of the Conference on Black Holes and Naked Singularities, Milan, Italy, 10–12 May 2008. [Google Scholar]
- Alestas, G.; Perivolaropoulos, L. Evading Derrick’s theorem in curved space: Static metastable spherical domain wall. Phys. Rev. D 2019, 99, 064026. [Google Scholar] [CrossRef] [Green Version]
- Perivolaropoulos, L. Gravitational Interactions of Finite Thickness Global Topological Defects with Black Holes. Phys. Rev. 2018, 97, 124035. [Google Scholar] [CrossRef] [Green Version]
- Grumiller, D. Model for gravity at large distances. Phys. Rev. Lett. 2010, 105, 211303. [Google Scholar] [CrossRef]
- Carloni, S.; Grumiller, D.; Preis, F. Solar system constraints on Rindler acceleration. Phys. Rev. D 2011, 83, 124024. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Solar system constraints on a Rindler-type extra-acceleration from modified gravity at large distances. JCAP 2011, 05, 019. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D.; Kazanas, D. Exact Vacuum Solution to Conformal Weyl Gravity and Galactic Rotation Curves. Astrophys. J. 1989, 342, 635–638. [Google Scholar] [CrossRef]
- Grumiller, D.; Preis, F. Rindler force at large distances. Int. J. Mod. Phys. D 2011, 20, 2761–2766. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Impact of a Pioneer/Rindler-type acceleration on the Oort cloud. Mon. Not. R. Astron. Soc. 2012, 419, 2226–2232. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.D.; Laing, P.A.; Lau, E.L.; Liu, A.S.; Nieto, M.M.; Turyshev, S.G. Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long range acceleration. Phys. Rev. Lett. 1998, 81, 2858–2861. [Google Scholar] [CrossRef] [Green Version]
- Lammerzahl, C.; Preuss, O.; Dittus, H. Is the physics within the Solar system really understood? Astrophys. Space Sci. Libr. 2008, 349, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Alestas, G.; Kraniotis, G.; Perivolaropoulos, L. Existence and stability of static spherical fluid shells in a Schwarzschild-Rindler–anti–de Sitter metric. Phys. Rev. D 2020, 102, 104015. [Google Scholar] [CrossRef]
- Frauendiener, J.; Hoenselaers, C.; Konrad, W. A shell around a black hole. Class. Quantum Gravity 1990, 7, 585–587. [Google Scholar] [CrossRef] [Green Version]
- Martin Moruno, P.; Montelongo Garcia, N.; Lobo, F.S.; Visser, M. Generic thin-shell gravastars. JCAP 2012, 03, 034. [Google Scholar] [CrossRef] [Green Version]
- Uchikata, N.; Yoshida, S. Slowly rotating thin shell gravastars. Class. Quantum Gravity 2016, 33, 025005. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Narayan, R. Where are all the gravastars? Limits upon the gravastar model from accreting black holes. Class. Quantum Gravity 2007, 24, 659–666. [Google Scholar] [CrossRef]
- Lim, Y.K.; Wang, Q.H. Exact gravitational lensing in conformal gravity and Schwarzschild–de Sitter spacetime. Phys. Rev. D 2017, 95, 024004. [Google Scholar] [CrossRef] [Green Version]
- Cutajar, D.; Adami, K.Z. Strong lensing as a test for Conformal Weyl Gravity. Mon. Not. Roy. Astron. Soc. 2014, 441, 1291–1296. [Google Scholar] [CrossRef] [Green Version]
- Sakai, N.; Saida, H.; Tamaki, T. Gravastar Shadows. Phys. Rev. 2014, D90, 104013. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alestas, G.; Kraniotis, G.V.; Perivolaropoulos, L. Stable, Spherical and Thin Fluid Shells. Phys. Sci. Forum 2021, 2, 24. https://doi.org/10.3390/ECU2021-09332
Alestas G, Kraniotis GV, Perivolaropoulos L. Stable, Spherical and Thin Fluid Shells. Physical Sciences Forum. 2021; 2(1):24. https://doi.org/10.3390/ECU2021-09332
Chicago/Turabian StyleAlestas, George, George V. Kraniotis, and Leandros Perivolaropoulos. 2021. "Stable, Spherical and Thin Fluid Shells" Physical Sciences Forum 2, no. 1: 24. https://doi.org/10.3390/ECU2021-09332
APA StyleAlestas, G., Kraniotis, G. V., & Perivolaropoulos, L. (2021). Stable, Spherical and Thin Fluid Shells. Physical Sciences Forum, 2(1), 24. https://doi.org/10.3390/ECU2021-09332