|
№ 11/2023
2. Fisher, R. C. (2022). State and local public finance. London: Routledge. doi.org/10.4324/9781003030645 3. Bovaird, T., & Löffler, E. (2023). Public management and governance. London: Routledge. doi.org/10.4324/9781003282839 4. Simson, R., Sharma, N., & Aziz, I. (2011). A guide to public financial management literature. London: Overseas Development Institute. Retrieved from www.academia.edu/24367768/A_guide_to_public_financial_management_literature. 5. Griffin, N., Uña, G., Bazarbash, M., & Verma, A. (2023). Fintech Payments in Public Financial Management: Benefits and Risks. IMF Working Papers, 020. doi.org/10.5089/9798400232213.001 6. Cangiano, M., Gelb, A., & Goodwin-Groen, R. (2019). Public financial management and the digitalization of payments. Center for Global Development. Retrieved from www.cgdev.org/sites/default/files/public-financial-management-and-digitalization-payments.pdf. 7. Oparin, V., & Fedosov, V. (2016). Dominants of th [in Ukrainian]e theory of public finance in the scientific school of KNEU. Securities market of Ukraine, 5-6, 3–13. Retrieved from www.securities.usmdi.org/?p=22&n=94&s=970 . 8. Leonenko, P., Fedosov, V., & Yukhymenko, P. (2017). Milestones of financial science development: problem methodology. Finance of Ukraine, 4, 55–74 [in Ukrainian]. doi.org/10.33763/finukr2017.04.055 9. Leonenko, P., Fedosov, V., & Yukhymenko, P. (2017). Financial science: genesis, evolution and development. Securities market of Ukraine, 1-2, 3–30. Retrieved from www.securities.usmdi.org/?p=22&n=95&s=993 [in Ukrainian]. 10. Oparin, V., Fedosov, V., & Yukhymenko, P. (2017). Public finances: genesis, theoretical and practical conceptualization collision. Finance of Ukraine, 2, 110–128. Retrieved from finukr.org.ua/?page_id=723&aid=4399 [in Ukrainian]. 11. Fedosov, V., Krysovatyy, A., Oparin, V., & Yukhymenko, P. (2019). Modern Ukrainian financial science: theoretical paradigm & practical concept of public finance. Digital Publishing House Oklahoma City. Retrieved from dspace.wunu.edu.ua/handle/316497/41463. 12. Paientko, T., & Fedosov, V. To implement controlling in financial management at the macro level in Ukraine. Finance of Ukraine, 6, 107–126. Retrieved from finukr.org.ua/?page_id=723&aid=4528 [in Ukrainian]. 13. Fedosov, V., & Paientko, T. (2018). Government financial accountability: Key problems and main trends in post-communist countries. Theoretical Journal of Accounting, 99 (155), 25–39. doi.org/10.5604/01.3001.0012.2930 14. Fedosov, V., & Paientko, T. (2019). Opportunistic government behavior: How controlling approaches in public management can prevent it. Theoretical Journal of Accounting, 104 (160), 37–54. doi.org/10.5604/01.3001.0013.4355 15. Jovanović, T., & Vašiček, V. (2021). The role and application of accounting and budgeting information in government financial management process - a qualitative study in Slovenia. Public Money & Management, 41 (2), 99–106. doi.org/10.1080/09540962.2020.1724405 16. Jerow, S., & Wolff, J. (2022). Fiscal policy and uncertainty. Journal of Economic Dynamics and Control, 145, 104559. doi.org/10.1016/j.jedc.2022.104559 17. Zahid, A., Iqbal, A., Rasool, G., & Altaf, A. (2023). Uncertainty in Fiscal and Monetary Policy and its Impact on Economic Growth: An Analysis from Pakistan. Empirical Economic Review, 6 (1), 94–114. Retrieved from ojs.umt.edu.pk/index.php/eer/article/view/1587. 18. Chohan, U. W. (2022). The return of Keynesianism? Exploring path dependency and ideational change in post-covid fiscal policy. Policy and Society, 41 (1), 68–82. doi.org/10.1093/polsoc/puab013 19. Amaglobeli, M. D., Hanedar, E., Hong, M. G. H., & Thévenot, C. (2022). Fiscal policy for mitigating the social impact of high energy and food prices. IMF Notes, 001. Retrieved from www.imf.org/en/Publications/IMF-Notes/Issues/2022/06/07/Fiscal-Policy-for-Mitigating-the-Social-Impact-of-High-Energy-and-Food-Prices-519013. 20. De Soyres, F., Santacreu, A. M., & Young, H. (2022, July 15). Fiscal policy and excess inflation during Covid-19: a cross-country view. FEDS Notes. doi.org/10.17016/2380-7172.3083 21. Ilori, A. E., Paez-Farrell, J., & Thoenissen, C. (2022). Fiscal policy shocks and international spillovers. European Economic Review, 141, 103969. doi.org/10.1016/j.euroecorev.2021.103969 22. Hariharan, N. K. (2017). Predictive model building for driver-based budgeting using machine learning. Journal of Emerging Technologies and Innovative Research, 4 (6), 567–575. doi.org/10.2139/ssrn.3899560 23. Li, W., Xiang, L., Zhou, Z., & Peng, F. (2021). Privacy budgeting for growing machine learning datasets. IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–10. doi.org/10.1109/INFOCOM42981.2021.9488920 24. Jang, H. (2019). A decision support framework for robust R&D budget allocation using machine learning. Decision Support Systems, 121. doi.org/10.1016/j.dss.2019.03.010 25. Faccia, A. (2020). Big Data-driven Budgeting and Business Planning. Preprint, 2020090747. doi.org/10.20944/preprints202009.0747.v1 26. Huacarpuma, R. C., Rodrigues, D. D. C., Serrano, A. M. R., da Costa, J. P. C. L., de Sousa, Jr., R. T., Holanda, M., & Araujo, A. P. F. (2013). Big data: A case study on data from the Brazilian ministry of planning, budgeting and management. IADIS Applied Computing, pp. 201–205. Retrieved from lasp.unb.br/wp-content/uploads/papers/AC_2013_Daniel_Ruben_Toni.pdf. 27. Shen, B., Hendri, P. A., & Shao, K. (2015). KPI-Driven Predictive ML Models Approach Towards Municipal Budgeting Optimization (CS229 Machine Learning Project Final Report). Stanford. Retrieved from cs229.stanford.edu/proj2015/194_report.pdf 28. Fisher, I. E., Garnsey, M. R., & Hughes, M. E. (2016). Natural language processing in accounting, auditing and finance: A synthesis of the literature with a roadmap for future research. Intelligent Systems in Accounting, Finance and Management, 23 (3), 157–214. doi.org/10.1002/isaf.1386 29. Valle-Cruz, D., Fernandez-Cortez, V., & Gil-Garcia, J. R. (2022). From E-budgeting to smart budgeting: Exploring the potential of artificial intelligence in government decision-making for resource allocation. Government Information Quarterly, 39 (2), 101–144. doi.org/10.1016/j.giq.2021.101644 30. Davies, J., Arana-Catania, M., Procter, R., van Lier, F. A., & He, Y. (2021, October). Evaluating the application of NLP tools in mainstream participatory budgeting processes in Scotland. Proceedings of the 14th International Conference on Theory and Practice of Electronic Governance, pp. 362–366. doi.org/10.1145/3494193.3494242 31. Tiron-Tudor, A., Donțu, A. N., & Bresfelean, V. P. (2022). Emerging Technologies’ Contribution to the Digital Transformation in Accountancy Firms. Electronics, 11 (22), 3818. doi.org/10.3390/electronics11223818 32. Eltweri, A., Faccia, A., & Khassawneh, O. (2021, December). Applications of Big Data within Finance: Fraud Detection and Risk Management within the Real Estate Industry. 2021 3rd International Conference on E-Business and E-commerce Engineering, pp. 67–73. doi.org/10.1145/3510249.3510262 33. Ljutyj, I., & Miedviedkova, N. The modern paradigm of the financial policy of the state and the features of its implementation under the war on the territory of Ukraine. Finance of Ukraine, 6, 61–74 [in Ukrainian]. doi.org/10.33763/finukr2023.06.061 34. Kudrjashov, V. (2023). Management of state budget financing in the aspect of Ukraine’s cooperation with the IMF. Finance of Ukraine, 6, 75–95 [in Ukrainian]. doi.org/10.33763/finukr2023.06.075 |