Abstract
In this paper we obtain some applications of the theory of differential subordination, differential superordination, and sandwich-type results for some subclasses of symmetric functions associated with Pascal distribution series.
Similar content being viewed by others
REFERENCES
R. M. Ali, V. Ravichandran, M. Hussain Khan, and K. G. Subramanian, ‘‘Differential sandwich theorems for certain analytic functions,’’ Far East J. Math. Sci. 15, 87–94 (2004).
M. K. Aouf, F. M. Al-Oboudi, and M. M. Haidan, ‘‘On some results for \(\lambda\)-spirallike and \(\lambda\)-Robertson functions of complex order,’’ Publ. Inst. Math. (Beograd)(N.S.) 75, 93–98 (2005).
M. K. Aouf and T. Bulboacă, ‘‘Subordination and superordination properties of multivalent functions defined by certain integral operator,’’ J. Franklin Inst. 347, 641–653 (2010). https://doi.org/10.1016/j.jfranklin.2010.01.001
M. K. Aouf, R. M. El-Ashwah, and S. M. El-Deeb, ‘‘Certain classes of univalent functions with negative coefficients and \(n\)-starlike with respect to certain points,’’ Mat. Vesnik 62, 215–226 (2010).
T. Bulboacă, ‘‘A class of superordination-preserving integral operators,’’ Indagationes Math. 13, 301–311 (2002). https://doi.org/10.1016/S0019-3577(02)80013-1
T. Bulboacă, ‘‘Classes of first order differential superordinations,’’ Demonstr. Math. 35 (2), 287–292 (2002). https://doi.org/10.1515/dema-2002-0209
T. Bulboacă, Differential Subordinations and Superordinations: Recent Results (House of Scientific Book Publ., Cluj-Napoca, 2005).
S. M. El-Deeb and T. Bulboacă, ‘‘Differential sandwich-type results for symmetric functions connected with a q-analog integral operator,’’ Mathematics 7, 1185 (2019). https://doi.org/10.3390/math7121185
S. M. El-Deeb, T. Bulboacă, and J. Dziok, ‘‘Pascal distribution series connected with certain subclasses of univalent functions,’’ Kyungpook Math. J. 59, 301–314 (2019). https://doi.org/10.5666/KMJ.2019.59.2.301
M. S. Liu, ‘‘On certain subclass of analytic functions,’’ J. South China Normal Univ. Natur. Sci. Ed., No. 4, 15–20 (2002).
T. H. MacGregor, ‘‘The radius of univalence of certain analytic functions,’’ Proc. Am. Math. Soc. 14, 514–520 (1963). https://doi.org/10.1090/S0002-9939-1963-0148891-3
S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, (Marcel Dekker, New York, 2000).
S. S. Miller and P. T. Mocanu, ‘‘Subordinants of differential superordinations,’’ Complex Var., Theory Appl.: Int. J. 48, 815–826 (2003). https://doi.org/10.1080/02781070310001599322
A. Muhammad, ‘‘Some differential subordination and superordination properties of symmetric functions,’’ Rend. Semin. Mat. Univ. Politec. Torino 69 (3), 247–259 (2011).
K. Sakaguchi, ‘‘On a certain univalent mapping,’’ J. Math. Soc. Jpn. 11, 72–75 (1959). https://doi.org/10.2969/jmsj/01110072
G. S. Salagean, ‘‘Subclasses of univalent functions,’’ in Complex Analysis — Fifth Romanian-Finnish Seminar, Lect. Notes Math., vol. 1013, (Springer, Berlin, 1983), pp. 362–372. https://doi.org/10.1007/BFb0066543
G. M. Shah, ‘‘On the univalence of some analytic functions,’’ Pac. J. Math. 43, 239–250 (1972).
T. N. Shanmugam, V. Ravichandran, and S. Sivasubramanian, ‘‘Differential sandwich theorems for some subclasses of analytic functions,’’ Aust. J. Math. Anal. Appl. 3, 8 (2006).
Author information
Authors and Affiliations
Corresponding authors
About this article
Cite this article
El-Deeb, S.M., Bulboacă, T. Differential Sandwich-Type Results for Symmetric Functions Associated with Pascal Distribution Series. J. Contemp. Mathemat. Anal. 56, 214–224 (2021). https://doi.org/10.3103/S1068362321040105
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S1068362321040105