Abstract
The residual strength of low-carbon steel after cyclic loading before different numbers of cycles at various stress amplitudes is estimated. The correlation of the residual strength with the damage, microhardness of steel, and its acoustic properties including the characteristics of acoustic emission, propagation velocity, and attenuation coefficient of the ultrasound is specified. New criteria of diagnostics of the material state are proposed to reflect the degree of damage during cyclic loading.
Similar content being viewed by others
References
Makhutov, N.A., Prochnost’ i bezopasnost’. Fundamental’nye i prikladnye issledovaniya (Strength and Safety. Fundamental and Applied Research), Novosibirsk: Nauka, 2008.
Salviato, M., Kirane, K., and Bazant, Z.P., Statistical distribution and size effect of residual strength of quasibrittle materials after a period of constant load, J. Mech. Phys. Solids, 2014, vol. 64, pp. 440–454.
Ivanova, V.S., Gurevich, S.E., Kop’ev, I.M., et al., Ustalost’ i khrupkost' metallicheskikh materialov (Fatigue and Brittleness of Metallic Materials), Moscow: Nauka, 1968.
Troshchenko, V.T., Gryaznov, B.A., Strizhalo, V.A., et al., Metody issledovaniya soprotivleniya metallov deformirovaniyu i razrusheniyu pri tsiklicheskom nagruzhenii (Study Methods of the Metal Resistance to Deformation and Fracture under Cyclic Loading), Kiev: Naukova Dumka, 1974.
Philippidis, T.P. and Passipoularidis, V.V., Residual strength after fatigue in composites: theory vs. experiment, Int. J. Fatigue, 2007, no. 29, pp. 2104–2116.
D’Amore, A., Giorgio, M., and Grassia, L., Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading, Int. J. Fatigue, 2015, no. 78, pp. 31–37.
Voznesenskii, A.S., Kutkin, Y.O., Krasilov, M.N., and Komissarov, A.A., Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor, Int. J. Fatigue, 2015, no. 77, pp. 194–198.
Botvina, L.R., Zharkova, N.A., Tyutin, M.R., Soldatenkov, A.P., Demina, Yu.A., and Levin, V.P., Development of plastic zones and damage during various types of loading, Zavod. Lab. Diagn. Mater., 2013, vol. 79, no. 5, pp. 46–55.
Nerazrushayushchii kontrol’: Spravochnik (Nondestructive testing: Handbook), Klyuev, V.V, Ed., Moscow: Mashinostroenie, 2006, vol. 7.
Lemaitre, J. and Chaboche, J.L., Mechanics of Solid Materials, Cambridge, UK: Cambridge Univ. Press, 1990.
Kachanov, L.M., Time of the rupture process under creep conditions, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1958, no. 8, pp. 26–31.
Rabotnov, Yu.N., On the mechanism of long-term destruction, in Voprosy prochnosti materialov i konstruktsii (Strength Issues of Materials and Structures), Moscow: Akad. Nauk SSSR, 1959, pp. 5–7.
Botvina, L.R., Shebalin, P.N., and Oparina, I.B., The mechanism of temporal variations of seismicity and acoustic emission before macrofracture, Dokl. Akad. Nauk, 2001, vol. 376, no. 4, pp. 480–484.
Truell, R., Elbaum, Ch., and Chick, B.B., Ultrasonic Methods in Solid State Physics, Amsterdam: Elsevier, 1969.
Laszlo, A., Rose, J.H., and Mobley, C.J., Ultrasonic method to determine gas porosity in aluminium alloy castings: theory and experiment, Appl. Phys., 1985, vol. 59, no. 2, pp. 335–347.
Ivanova, V.S. and Gordienko, L.K., Changes in the physical properties of metals under cyclic loading, in Metallugiya, metallovedenie, fiziko-khimicheskie metody issledovaniya (Metallugy, Metal Science, Physical and Chemical Research Methods), Tr. Inst. Metall. Baikova, 1962, vol. 13, p. 63.
Hirao, M. and Ogi, H., Electromagnetic Acoustic Transducers, Springer Ser. in Measurement Science and Technology, Japan: Springer, 2017.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © L.R. Botvina, M.R. Tyutin, T.B. Petersen, V.P. Levin, A.P. Soldatenkov, D.V. Prosvirnin, 2018, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, No. 6.
About this article
Cite this article
Botvina, L.R., Tyutin, M.R., Petersen, T.B. et al. Residual Strength, Microhardness, and Acoustic Properties of Low-Carbon Steel after Cyclic Loading. J. Mach. Manuf. Reliab. 47, 516–524 (2018). https://doi.org/10.3103/S105261881806002X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S105261881806002X