[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Residual Strength, Microhardness, and Acoustic Properties of Low-Carbon Steel after Cyclic Loading

  • Reliability, Strength, and Wear Resistance of Machines and Structures
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The residual strength of low-carbon steel after cyclic loading before different numbers of cycles at various stress amplitudes is estimated. The correlation of the residual strength with the damage, microhardness of steel, and its acoustic properties including the characteristics of acoustic emission, propagation velocity, and attenuation coefficient of the ultrasound is specified. New criteria of diagnostics of the material state are proposed to reflect the degree of damage during cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makhutov, N.A., Prochnost’ i bezopasnost’. Fundamental’nye i prikladnye issledovaniya (Strength and Safety. Fundamental and Applied Research), Novosibirsk: Nauka, 2008.

    Google Scholar 

  2. Salviato, M., Kirane, K., and Bazant, Z.P., Statistical distribution and size effect of residual strength of quasibrittle materials after a period of constant load, J. Mech. Phys. Solids, 2014, vol. 64, pp. 440–454.

    Article  Google Scholar 

  3. Ivanova, V.S., Gurevich, S.E., Kop’ev, I.M., et al., Ustalost’ i khrupkost' metallicheskikh materialov (Fatigue and Brittleness of Metallic Materials), Moscow: Nauka, 1968.

    Google Scholar 

  4. Troshchenko, V.T., Gryaznov, B.A., Strizhalo, V.A., et al., Metody issledovaniya soprotivleniya metallov deformirovaniyu i razrusheniyu pri tsiklicheskom nagruzhenii (Study Methods of the Metal Resistance to Deformation and Fracture under Cyclic Loading), Kiev: Naukova Dumka, 1974.

    Google Scholar 

  5. Philippidis, T.P. and Passipoularidis, V.V., Residual strength after fatigue in composites: theory vs. experiment, Int. J. Fatigue, 2007, no. 29, pp. 2104–2116.

    Article  Google Scholar 

  6. D’Amore, A., Giorgio, M., and Grassia, L., Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading, Int. J. Fatigue, 2015, no. 78, pp. 31–37.

    Article  Google Scholar 

  7. Voznesenskii, A.S., Kutkin, Y.O., Krasilov, M.N., and Komissarov, A.A., Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor, Int. J. Fatigue, 2015, no. 77, pp. 194–198.

    Article  Google Scholar 

  8. Botvina, L.R., Zharkova, N.A., Tyutin, M.R., Soldatenkov, A.P., Demina, Yu.A., and Levin, V.P., Development of plastic zones and damage during various types of loading, Zavod. Lab. Diagn. Mater., 2013, vol. 79, no. 5, pp. 46–55.

    Google Scholar 

  9. Nerazrushayushchii kontrol’: Spravochnik (Nondestructive testing: Handbook), Klyuev, V.V, Ed., Moscow: Mashinostroenie, 2006, vol. 7.

  10. Lemaitre, J. and Chaboche, J.L., Mechanics of Solid Materials, Cambridge, UK: Cambridge Univ. Press, 1990.

    Book  MATH  Google Scholar 

  11. Kachanov, L.M., Time of the rupture process under creep conditions, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1958, no. 8, pp. 26–31.

    Google Scholar 

  12. Rabotnov, Yu.N., On the mechanism of long-term destruction, in Voprosy prochnosti materialov i konstruktsii (Strength Issues of Materials and Structures), Moscow: Akad. Nauk SSSR, 1959, pp. 5–7.

    Google Scholar 

  13. Botvina, L.R., Shebalin, P.N., and Oparina, I.B., The mechanism of temporal variations of seismicity and acoustic emission before macrofracture, Dokl. Akad. Nauk, 2001, vol. 376, no. 4, pp. 480–484.

    Google Scholar 

  14. Truell, R., Elbaum, Ch., and Chick, B.B., Ultrasonic Methods in Solid State Physics, Amsterdam: Elsevier, 1969.

    Google Scholar 

  15. Laszlo, A., Rose, J.H., and Mobley, C.J., Ultrasonic method to determine gas porosity in aluminium alloy castings: theory and experiment, Appl. Phys., 1985, vol. 59, no. 2, pp. 335–347.

    Google Scholar 

  16. Ivanova, V.S. and Gordienko, L.K., Changes in the physical properties of metals under cyclic loading, in Metallugiya, metallovedenie, fiziko-khimicheskie metody issledovaniya (Metallugy, Metal Science, Physical and Chemical Research Methods), Tr. Inst. Metall. Baikova, 1962, vol. 13, p. 63.

    Google Scholar 

  17. Hirao, M. and Ogi, H., Electromagnetic Acoustic Transducers, Springer Ser. in Measurement Science and Technology, Japan: Springer, 2017.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Botvina.

Additional information

Original Russian Text © L.R. Botvina, M.R. Tyutin, T.B. Petersen, V.P. Levin, A.P. Soldatenkov, D.V. Prosvirnin, 2018, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, No. 6.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botvina, L.R., Tyutin, M.R., Petersen, T.B. et al. Residual Strength, Microhardness, and Acoustic Properties of Low-Carbon Steel after Cyclic Loading. J. Mach. Manuf. Reliab. 47, 516–524 (2018). https://doi.org/10.3103/S105261881806002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S105261881806002X

Navigation