[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Research on Transmission Control of Airborne Communication Data Link System Based on Artificial Fish Swarm Algorithm

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

To enhance the anti-interference performance of airborne communication data link system, a transmission control method based on improved fish swarm algorithm is constructed. Firstly, the airborne data link channel model is constructed. Secondly, equalization algorithm of airborne data link is constructed, and the improved artificial fish algorithm is designed, and the algorithm procedure of transmission control of airborne communication data link system is established. Finally, simulation analysis is carried out, results show that the proposed method has higher transmission success rate, lower transmission time, and higher transmission rate, the proposed model has better performance in transmission control of airborne communication data link system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yao, G. and Xu, Z., Trajectory tracking analysis of airborne data link antenna, Comput. Commun., 2021, vol. 176, pp. 182–189. https://doi.org/10.1016/j.comcom.2021.06.001

    Article  Google Scholar 

  2. Almalawi, A., Khan, A., Alsolami, F., Alkhathlan, A., Fahad, A., Irshad, K., Alfakeeh, A., and Qaiyum, S., Arithmetic optimization algorithm with deep learning enabled airborne particle-bound metals size prediction model, Chemosphere, 2022, vol. 303, p. 134960. https://doi.org/10.1016/j.chemosphere.2022.134960

    Article  Google Scholar 

  3. Gulec, F. and Atakan, B., Fluid dynamics-based distance estimation algorithm for macroscale molecular communication, Nano Commun. Networks, 2021, vol. 28, p. 100351. https://doi.org/10.1016/j.nancom.2021.100351

    Article  Google Scholar 

  4. Dastranj, P., Solouk, V., and Kalbkhani, H., Energy-efficient deep-predictive airborne base station selection and power allocation for UAV-assisted wireless networks, Comput. Commun., 2022, vol. 191, pp. 274–284. https://doi.org/10.1016/j.comcom.2022.05.001

    Article  Google Scholar 

  5. Zhang, Yi., Li, S., and Xu, B., Convergence analysis of beetle antennae search algorithm and its applications, Soft Comput., 2021, vol. 25, no. 16, pp. 10595–10608. https://doi.org/10.1007/s00500-021-05991-z

    Article  Google Scholar 

  6. Costabile, P., Costanzo, C., De Lorenzo, G., De Santis, R., Penna, N., and Macchione, F., Terrestrial and airborne laser scanning and 2-D modelling for 3-D flood hazard maps in urban areas: new opportunities and perspectives, Environ. Modell. Software, 2021, vol. 135, p. 104889. https://doi.org/10.1016/j.envsoft.2020.104889

    Article  Google Scholar 

  7. Joshi, A., Wala, A., Ludhiyani, M., Chakraborty, D., Chung, H., and Manjunath, D., Outdoor cooperative flight using decentralized consensus algorithm and a guaranteed real-time communication protocol, Control Eng. Pract., 2019, vol. 88, pp. 128–140. https://doi.org/10.1016/j.conengprac.2019.05.002

    Article  Google Scholar 

  8. Kernchen, S., Löder, M., Fischer, F., Fischer, D., Moses, S., Georgi, C., Nölscher, A., Held, A., and Laforsch, C., Airborne microplastic concentrations and deposition across the Weser River catchment, Sci. Total Environ., 2022, vol. 818, p. 151812. https://doi.org/10.1016/j.scitotenv.2021.151812

    Article  Google Scholar 

  9. Fan, Yi., Tao, M., Su, J., and Wang, L., Analysis of goodness-of-fit method based on local property of statistical model for airborne sea clutter data, Digital Signal Process., 2020, vol. 99, p. 102653. https://doi.org/10.1016/j.dsp.2019.102653

    Article  Google Scholar 

  10. Vermillion, C., Cobb, M., Fagiano, L., Leuthold, R., Diehl, M., Smith, R., Wood, T., Rapp, S., Schmehl, R., Olinger, D., and Demetriou, M., Electricity in the air: Insights from two decades of advanced control research and experimental flight testing of airborne wind energy systems, Annu. Rev. Control, 2021, vol. 52, pp. 330–357. https://doi.org/10.1016/j.arcontrol.2021.03.002

    Article  Google Scholar 

  11. Zhao, B., Ren, Yi., Gao, D., Xu, L., and Zhang, Yu., Energy utilization efficiency evaluation model of refining unit Based on Contourlet neural network optimized by improved grey optimization algorithm, Energy, 2019, vol. 185, pp. 1032–1044. https://doi.org/10.1016/j.energy.2019.07.111

    Article  Google Scholar 

  12. Ebrahimi, M., Joseph, S., Cathal, C., Donnell, O., and Toal, D., Experimental rig investigation of a direct interconnection technique for airborne wind energy systems, Int. J. Electr. Power Energy Syst., 2020, vol. 123, p. 106300.

    Article  Google Scholar 

  13. Zhao, B., Chen, H., Gao, D., and Xu, L., Risk assessment of refinery unit maintenance based on fuzzy second generation curvelet neural network, Alexandria Eng. J., 2020, vol. 59, no. 3, pp. 1823–1831. https://doi.org/10.1016/j.aej.2020.04.052

    Article  Google Scholar 

  14. Merkert, R. and Bushell, J., Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control, J. Air Transp. Manage., 2020, vol. 89, p. 101929. https://doi.org/10.1016/j.jairtraman.2020.101929

    Article  Google Scholar 

  15. Liu, Q., Ren, H., Tang, R., and Yao, J., Optimizing co-existing multicast routing trees in IP network via discrete artificial fish school algorithm, Knowl.-Based Syst., 2020, vol. 191, p. 105276. https://doi.org/10.1016/j.knosys.2019.105276

    Article  Google Scholar 

  16. Zhao, B., Ren, Yi., Gao, D., and Xu, L., Performance ratio prediction of photovoltaic pumping system based on grey clustering and second curvelet neural network, Energy, 2019, vol. 171, pp. 360–371. https://doi.org/10.1016/j.energy.2019.01.028

    Article  Google Scholar 

  17. Venu, D., Mayuri, A.V.R., Neelakandan, S., Murthy, G.L.N., Arulkumar, N., and Shelke, N., An efficient low complexity compression based optimal homomorphic encryption for secure fiber optic communication, Optik, 2022, vol. 252, p. 168545. https://doi.org/10.1016/j.ijleo.2021.168545

    Article  Google Scholar 

  18. Gu, K., Mao, Z., Duan, X., Wu, G., and Yan, L., Identifying the module structure of swarms using a new framework of network-based time series clustering, Eng. Appl. Artif. Intell., 2021, vol. 101, p. 104214. https://doi.org/10.1016/j.engappai.2021.104214

    Article  Google Scholar 

  19. Hassan Nasir, M., Khan, S., Mubashir Khan, M., and Fatima, M., Swarm intelligence inspired intrusion detection systems-A systematic literature review, Comput. Networks, 2022, vol. 205, p. 108708.

    Article  Google Scholar 

  20. Nedjah, N., Macedo Mourelle, L., Jorge, P., and De Oliveira, A., Simultaneous localization and mapping using swarm intelligence based methods, Expert Syst. with Appl., 2020, vol. 159, p. 113547. https://doi.org/10.1016/j.eswa.2020.113547

    Article  Google Scholar 

  21. Faradonbe, S.M. and Safi-Esfahani, F., A classifier task based on neural Turing machine and particle swarm algorithm, Neurocomputing, 2020, vol. 396, pp. 133–152. https://doi.org/10.1016/j.neucom.2018.07.097

    Article  Google Scholar 

  22. Parrott, C., Dodd, T., Boxall, J., and Horoshenkov, K., Simulation of the behavior of biologically-inspired swarm robots for the autonomous inspection of buried pipes, Tunnelling Underground Space Technol., 2020, vol. 101, p. 103356. https://doi.org/10.1016/j.tust.2020.103356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhen Nie.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiuzhen Nie, Yingxue Jiao Research on Transmission Control of Airborne Communication Data Link System Based on Artificial Fish Swarm Algorithm. Aut. Control Comp. Sci. 57, 327–336 (2023). https://doi.org/10.3103/S0146411623040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411623040077

Keywords:

Navigation