[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Duplication of Boolean Complements for Synthesis of Fault-Tolerant Digital Devices and Systems

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

A new architecture for the synthesis of fault-tolerant digital devices, which is easier to implement as compared to the well-known architecture based on triple modular redundancy (TMR), is proposed. The architecture is implemented based on the Boolean complement principle, which implies the use of a special control block for evaluating complement functions, rather than by introducing exact copies of an original circuit. In practice, its complexity can be significantly lower than the complexity of the original circuit. This makes it possible to synthesize fault-tolerant devices with simpler designs as compared to TMR-based devices. The proposed architecture consists of three blocks: the original circuit, the signal error detection circuit, and the signal correction circuit. The synthesis of a fault-tolerant digital device is aimed at generating the structure of the signal error detection circuit, which implements the idea of duplication of complements. The advantages and disadvantages of the proposed fault-tolerant architecture are discussed. The results of experiments on some combinational benchmarks, which demonstrate the effectiveness of the proposed approach, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. McCluskey, E.J., Logic Design Principles with Emphasis on Testable Semicustom Circuits, Englewood Cliffs, N.J.: Prentice-Hall, 1986.

    Google Scholar 

  2. Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Self-Testing Devices and Fault-Tolerant Systems), Moscow: Radio i Svyaz’, 1989.

  3. Mikoni, S.V., Obshchie diagnosticheskie bazy znanii vychislitel’nykh sistem (General Diagnostic Knowledge Bases of Computing Systems), St. Petersburg: SPIIRAN, 1992.

  4. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Khristov, Kh.A., and Gavzov, D.V., Metody postroeniya bezopasnykh mikroelektronnykh sistem zheleznodorozhnoi avtomatiki (Methods for Constructing Safe Microelectronic Systems of Railway Automation), Sapozhnikov, V.V., Ed., Moscow: Transport, 1995.

    Google Scholar 

  5. Drozd, A.V., Kharchenko, V.S., Antoshchuk, S.G., Drozd, Yu.V., Drozd, M.A., and Sulima, Yu.Yu., Rabochee diagnostirovanie bezopasnykh informatsionno-upravlyayushchikh system (Operational Diagnostics of Safe Information Control Systems), Drozd, A.V. and Kharchenko, V.S., Eds., Kharkov: Nats. Aerokosmicheskii Univ. im. Zhukovskogo, 2012.

  6. Kharchenko, V., Kondratenko, Yu., and Kacprzyk, J., Green IT Engineering: Concepts, Models, Complex Systems Architectures, Studies in Systems, Decision and Control, vol. 74, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-44162-7

  7. Gavrilov, M.A., Ostianu, V.M., and Potekhin, A.I., Reliability of discrete systems, Itogi nauki i tekhniki. Seriya Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya Kibernetika (Results of Science and Technology. Probability Theory. Mathematical Statistics. Theoretical Cybernetics), Moscow, 1969, pp. 7–104.

  8. Lysenko, I.V. and Kharchenko, V.S., Potential vitality of multi-layered majorant-reserved systems subject to adverse impulse effects, Autom. Remote Control, 1997, vol. 58, no. 2, pp. 320–327.

    Google Scholar 

  9. Sklyar, V.V. and Kharchenko, V.S., Fault-tolerant computer-aided control systems with multiversion-threshold adaptation: Adaptation methods, reliability estimation, and choice of an architecture, Autom. Remote Control, 2002, vol. 63, no. 6, pp. 991–1003.  https://doi.org/10.1023/A:1016130108770

    Article  MATH  Google Scholar 

  10. Hamamatsu, M., Tsuchiya, T., and Kikuno, T., Finding the optimal configuration of a cascading TMR system, 14th IEEE Pacific Rim Int. Symp. on Dependable Computing, Taipei, 2008, IEEE, 2008, pp. 349–350.  https://doi.org/10.1109/PRDC.2008.12

  11. Matsumoto, K., Uehara, M., and Mori, H., Evaluating the fault tolerance of stateful TMR, 13th Int. Conf. on Network-Based Information Systems, Takayama, Japan, 2010, IEEE, 2010, pp. 332–336.  https://doi.org/10.1109/NBiS.2010.86

  12. Borecký, J., Kohlík, M., Vit, P., and Kubátová, H., Enhanced duplication method with TMR-like masking abilities, Euromicro Conf. on Digital System Design (DSD), Limassol, Cyprus, 2016, IEEE, 2016, pp. 690–693.  https://doi.org/10.1109/DSD.2016.91

  13. Krcma, M., Kotasek, Z., and Lojda, J., Triple modular redundancy used in field programmable neural networks, IEEE East-West Design & Test Symp. (EWDTS), Novi Sad, Serbia, 2017, IEEE, 2017, pp. 1–6.  https://doi.org/10.1109/EWDTS.2017.8110128

  14. Shcherbakov, N.S., Samokorrektiruyushchiesya diskretnye ustroistva (Self-Correction Discrete Devices), Moscow: Mashinostroenie, 1975.

  15. Stempkovskiy, A.L., Telpukhov, D.V., Zhukova, T.D., Gurov, S.I., and Solovyev, R.A., Synthesis methods of fault-tolerant combination CMOS circuits providing automatic correction of errors, Izv. Yuzhnogo Fed. Univ. Tekh. Nauki, 2017, no. 7, pp. 197–210.  https://doi.org/10.23683/2311-3103-2017-7-197-210

  16. Sogomonyan E.S., Self-correction fault-tolerant systems, Preprint, 2018.

  17. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Osnovy teorii nadezhnosti i tekhnicheskoi diagnostiki (Foundations of the Reliability Theory and Engineering Diagnostics), St. Petersburg: Lan’, 2019.

  18. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Kody Khemminga v sistemakh funktsional’nogo kontrolya logicheskikh ustroistv (Hamming Codes in Systems of Functional Control of Logic Devices), St. Petersburg: Nauka, 2018.

    Google Scholar 

  19. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Kody s summirovaniem dlya sistem tekhnicheskogo diagnostirovaniya (Codes with Summation for Systems of Engineering Diagnostics), Vol. 1: Klassicheskie kody Bergera i ikh modifikatsii (Classical Berger Codes and Their Modifications), Moscow: Nauka, 2020.

  20. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Kody s summirovaniem dlya sistem tekhnicheskogo diagnostirovaniya (Codes with Summation for Systems of Engineering Diagnostics), Vol. 2: Vzveshennye kody s summirovaniem (Weight-Based Codes with Summation), Moscow: Nauka, 2021.

  21. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Dmitriev, A.V., Morozov, A.V., and Gessel’, M., Organization of functional control of combinational circuits by the logical complement method, Elektron. Model., 2002, vol. 24, no. 6, pp. 52–66.

    Google Scholar 

  22. Gessel, M., Morozov, A.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Logic complement, a new method of checking the combinational circuits, Autom. Remote Control, 2003, vol. 64, pp. 153–161. https://doi.org/10.1023/A:1021884727370

    Article  MathSciNet  MATH  Google Scholar 

  23. Göessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D., New Methods of Concurrent Checking, Frontiers in Electronic Testing, vol. 42, Dordrecht: Springer, 2008. https://doi.org/10.1007/978-1-4020-8420-1

  24. Pivovarov, D.V., Formation of concurrent error detection systems in multiple-output combinational circuits using the Boolean complement method based on constant-weight codes, Avtom. Transp., 2018, vol. 4, no. 1, pp. 131–149.

    Google Scholar 

  25. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Pivovarov, D.V., Boolean complement method based on constant-weight code “1-out-of-4” for formation of totally self-checking concurrent error detection systems, Elektron. Model., 2017, vol. 39, no. 2, pp. 15–34.

    Article  Google Scholar 

  26. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Signal correction for combinational automation devices on the basis of Boolean complement with control of calculations by parity, Informatika, 2020, vol. 17, no. 2, pp. 71–85.  https://doi.org/10.37661/1816-0301-2020-17-2-71-85

    Article  Google Scholar 

  27. Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Typical structure of a duplicate error correction scheme with code control with summation of weighted transitions, Elektron. Model., 2020, vol. 42, no. 5, pp. 38–50.  https://doi.org/10.15407/emodel.42.05.038

    Article  Google Scholar 

  28. Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Boolean-complement based fault-tolerant electronic device architectures, Autom. Remote Control, 2021, vol. 82, no. 8, pp. 1403–1417.  https://doi.org/10.1134/S0005117921080075

    Article  MATH  Google Scholar 

  29. Ghosh, S., Basu, S., and Touba, N.A., Synthesis of low power CED circuits based on parity codes, 23rd IEEE VLSI Test Symp. (VTS’05), Palm Springs, Calif., 2005, IEEE, 2005, pp. 315–320.  https://doi.org/10.1109/VTS.2005.80

  30. Zakrevskij, A., Pottosin, Yu., and Cheremisinova, L., Optimization in Boolean Space, Tallinn: TUT Press, 2009.

    Google Scholar 

  31. Kunz, W. and Menon, P.R., Multi-level logic optimization by implication analysis, IEEE/ACM Int. Conf. on Computer-Aided Design, San Jose, Calif., 2002, IEEE, 2002, pp. 6–13.  https://doi.org/10.1109/ICCAD.1994.629735

  32. Sentovich, E.M., Singh, K.J., Moon, C., Savoj, H., Brayton, R.K., and Sangiovanni-Vincentelli, A., Sequential Circuit Design Using Synthesis and Optimization, Proc. 1992 IEEE Int. Conf. on Computer Design: VLSI in Computers & Processors, Cambridge, Mass., 2002, IEEE, 2002, pp. 328–333.  https://doi.org/10.1109/ICCD.1992.276282

  33. Collection of digital design benchmarks. http://ddd.fit.cvut.cz/www/prj/Benchmarks/. Cited April 13, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Sapozhnikov, Vl. V. Sapozhnikov or D. V. Efanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Kornienko

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhnikov, V.V., Sapozhnikov, V.V. & Efanov, D.V. Duplication of Boolean Complements for Synthesis of Fault-Tolerant Digital Devices and Systems. Aut. Control Comp. Sci. 56, 1–9 (2022). https://doi.org/10.3103/S0146411622010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622010096

Keywords:

Navigation