[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Denoising ECG Signals by Using Extended Kalman Filter to Train Multi-Layer Perceptron Neural Network

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study a denoising scheme for ECG signals by using extended Kalman filter based on Multilayer Perceptron Neural Network. A comparison with other enhancement conventional filters, such as, Wiener, wavelet, median and least mean square filters has been investigated. This approach is evaluated on several ECG by artificially adding white and colored Gaussian noises, and real non-stationary muscle artifact to visually inspect clean ECG recordings. It is also evaluated on studying the mean square error and Peak signal to noise ratio of the filters outputs. On the basis of these two parameters, a comparative analysis has been presented to explore the efficient denoising capability of the proposed method. The results of this simulation show the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Saritha, C., Sukanya, V., and Murthy, Y.N., ECG signal analysis using wavelet transforms, Bulg. J. Phys., 2008, vol. 35, no. 1, pp. 68–77.

    MATH  Google Scholar 

  2. Rakshit, M., Panigrahy, D., and Sahu, P.K., EKF with PSO technique for delineation of P and T wave in electrocardiogram (ECG) signal, Proc. 2nd IEEE Conf. on Signal Processing and Integrated Networks, 2015, pp. 696–701.

  3. Kaur, T., A review for removal of baseline wander noise in ECG using various techniques, Int. J. Res. Appl. Sci. Eng. Technol., 2015, vol. 3, no. 7, pp. 2321–9653.

    Google Scholar 

  4. Gotchev, A., Nikolaev, N. and Egiazaian, K., Improving the transform domain ECG denoising performance by applying inter beat and intra-beat decorrelating transforms, Proc. The 2001 IEEE International Symposium on Circuits and Systems, 2001, pp. 17–20.

  5. Karthika, R., Narender, K., Tech, M., and Vikram, B.R., ECG signal denoising using least-mean-square and normalised-least-mean-square algorithm based adaptive filter, Int. J. Mag. Eng., 2015, vol. 2, no. 2015, pp. 640–646.

  6. Azami, H., Mohammadi, K., and Bozorgtabar, B., An improved signal segmentation using moving average and Savitzky-Golay filter, J. Signal Inf. Process., 2012, vol. 3, no. 1, p. 39.

    Google Scholar 

  7. Vidya, M.J. and Sadasiv, S.A., Comparative study on removal of noise in ECG signal using different filters, Int. J. Innovative Res. Dev., 2013, vol. 2, no. 4, pp. 915–927.

    Google Scholar 

  8. Lander, P. and Berbari, E.J., Time-frequency plane Wiener filtering of the high-resolution ECG: Background and time-frequency representations, IEEE Trans. Biomed. Eng., 1997, vol. 44, no. 4, pp. 247–255.

    Article  Google Scholar 

  9. Daqrouq, K., ECG baseline wandering reduction using discrete wavelet transforms, Asian J. Inf. Technol., 2005, vol. 4, no. 11, pp. 989–995.

    Google Scholar 

  10. Donoho, D.L., Denoising by soft-thresholding, IEEE Trans. Inf. Theory, 1995, vol. 41, no. 3, pp. 613–627.

    Article  MATH  Google Scholar 

  11. Martis, R.J., Acharya, U.R., Mandana, K.M., et al., Application of principal component analysis to ECG signals for automated diagnosis of cardiac health, Expert Syst. Appl., 2012, vol. 39, no. 14, pp. 11792–11800.

    Article  Google Scholar 

  12. Deshpande, S. and Rajankar, S.O., Removing artifacts from electrocardiographic signals using independent components analysis, Int. J. Res. Sci. Adv. Technol., 2013, vol. 2, no. 5, pp. 182–184.

    Google Scholar 

  13. Sao, P., Hegadi, R., and Karmakar, S., ECG signal analysis using artificial neural network, Proc. National Conf. on Knowledge, Innovation in Technology and Engineering, 2015, pp. 82–86.

  14. Popescu, M.C., Balas, V.E., Perescu-Popescu, L., and Mastorakis, N., Multilayer perceptron and neural networks, WSEAS Transactions on Circuits and Systems, 2009, vol. 8, no. 7, pp. 579–588.

    Google Scholar 

  15. Awasthi, V. and Raj, K., A comparison of Kalman filter and extended Kalman filter in State estimation, Int. J. Electron. Eng., 2011, vol. 3, no. 1, pp. 67–71.

    Google Scholar 

  16. Panigrahy, D. and Sahu, P.K., Extended Kalman smoother with differential evolution technique for denoising of ECG signal, Australasian Phys. Eng. Sci. Med., 2016, vol. 39, no. 3, pp. 783–795.

    Article  Google Scholar 

  17. Rachim, V.P., Kang, S.C., Chung, W.Y., and Kwon, T.H., Implementation of extended Kalman filter for real-time noncontact ECG signal acquisition in android-based mobile monitoring system, J. Sensor Sci. Technol., 2014, vol. 23, no. 1, pp. 7–14.

    Article  Google Scholar 

  18. Moein, S., An MLP Neural Network for ECG Noise Removal Based on Kalman Filter, New York: Springer, 2010.

    Book  Google Scholar 

  19. Sameni, R., Shamsollahi, M.B., and Jutten, C., and al., Filtering noisy ECG signals using the extended Kalman filter based on a modified dynamic ECG model, Proc. 32th IEEE Conf. on Computers in Cardiology, 2005, pp. 1017–1020.

  20. Sayadi, O. and Shamsollahi, M.B., ECG denoising and compression using a modified extended Kalman filter structure, IEEE Trans. Biomed. Eng., 2008, vol. 55, no. 9, pp. 2240–2248.

    Article  Google Scholar 

  21. Belmahdi, F., Application du Filtre de Kalman pour le Debruitage des Signaux ECG, Algeria: Academic, 2015.

    Google Scholar 

  22. Moody, G.B. and Mark G.R., MIT BIH Arrhythmia Database. https://physionet.org/physiobank/database/mitdb/.

  23. Moody, G.B., Muldrow, W.E., and Mark, G.R., The MIT-BIH Noise Stress Test. http://www.physionet.org/ physiobank/database/nstdb/.

  24. Sayyad, R.A. and Mundada, K., Enhancement and denoising of ECG signal using extended Kalman filter and extended Kalman smoother, J. Innovation Electron. Commun. Eng., 2016, vol. 6, no. 1, pp. 22–26.

    Google Scholar 

  25. Wan, E.A. and Nelson, A.T., Neural dual extended Kalman filtering: Applications in speech enhancement and monaural blind signal separation, Proc. IEEE Conf. on Neural Networks for Signal Processing, 1997, pp. 466–475.

  26. Podder, P., Khan, T.Z., and Khan, M.H., Comparative performance analysis of Hamming, Hanning and Blackman window, Int. J. Comput. Appl., 2014, vol. 96, no. 18, pp. 1–7.

    Google Scholar 

  27. de Lima, D.P., Sanches, R.F.V., and Pedrino, E.C., Neural network training using unscented and extended Kalman filter, Eng. J., 2017, vol. 1, no. 4, pp. 555–568.

    Google Scholar 

  28. Kaoulal, R., Hedeili, N., and Chikh, M.A., Application des Reseaux de Neurones dans la Reconnaissance des Arythmies Cardiaques, Algeria: Academic, 2003.

    Google Scholar 

  29. Sarkka, S., On unscented Kalman filtering for state estimation of continuous-time nonlinear systems, IEEE Trans. Autom. Control, 2007, vol. 52, no. 9, pp. 1631–1641.

    Article  MathSciNet  MATH  Google Scholar 

  30. Arasaratnam, I. and Haykin, S., Cubature Kalman filters, IEEE Trans. Autom. Control, 2009, vol. 54, no. 6, pp. 1254–1269.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the laboratory of automatic and signals at Annaba (LASA) for its support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bousbia Salah.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaamouri, S., Salah, M.B. & Hamdi, R. Denoising ECG Signals by Using Extended Kalman Filter to Train Multi-Layer Perceptron Neural Network. Aut. Control Comp. Sci. 52, 528–538 (2018). https://doi.org/10.3103/S0146411618060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618060044

Keywords:

Navigation