[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characterizing ethnic interactions from human communication patterns in Ivory Coast

Abstract / Introduction Related Papers Cited by
  • Towards the consolidation of peace and national development, Ivory Coast must overcome the lack of cohesion, responsible for the emergence of two civil wars in the last years. As in many African countries, ethnic violence is a result of the way territories are organized and the prevalence of some groups over others. Nowadays the increasing availability of electronic data allows to quantify and unveil societal relationships in an unprecedented way. In this sense, the present work analyzes mobile phone data in order to provide information about the regional and ethnic interactions in Ivory Coast. We accomplish so by means of the construction and analysis of complex social networks with several types of interactions, such as calling activity and human mobility. We found that in a subregional scale, the ethnic identity plays an important role in the communication patterns, while at the interregional scale, other factors arise like economical interests and available infrastructure.
    Mathematics Subject Classification: 91D30, 05C82, 91C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]
    [2]

    L. Bengtsson, X. Lu, A. Thorson, R. Garfield and J. von Schreeb, Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti, PLoS Medicine, 8 (2011), e1001083.

    [3]

    V. D. Blondel et al., Data for development: The D4D challenge on mobile phone data, ">arXiv:1210.0137, 2012.

    [4]

    V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech., 10 (2008), P10008.

    [5]

    S. Bocaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175-308.doi: 10.1016/j.physrep.2005.10.009.

    [6]

    J. Bollen, H. Mao and X.-J. Zeng, Twitter mood predicts the stock market, J. Comput. Science, 2 (2011), 1-8.doi: 10.1016/j.jocs.2010.12.007.

    [7]
    [8]

    Document de strategie pays et programe indicatif national pour la periode 2008-2013, Report from Communaute europeenne - Republique de Côte d'Ivoire, 2008. Available from: http://ec.europa.eu/development/icenter/repository/scanned\_ci\_csp10\_fr.pdf.

    [9]

    N. Eagle, M. Macy and R. Claxton, Network diversity and economic development, Science, 328 (2010), 1029-1031.doi: 10.1126/science.1186605.

    [10]

    T. Hastie, et al., The Elements of Statistical Learning, Springer, New York, 2009.doi: 10.1007/978-0-387-84858-7.

    [11]

    D. Lazer, et al., Life in the network: The coming age of computational social science, Science, 323 (2009), 721-723.

    [12]

    M. P. Lewis, Ethnologue: Languages of the World, $16^{th}$ edition, SIL International, Dallas, Tex., 2009.

    [13]

    M. Lim, R. Metzler and Y. Bar-Yam, Global pattern formation and ethnic/cultural violence, Science, 317 (2007), 1540-1544.doi: 10.1126/science.1142734.

    [14]

    A. J. Morales, J. Borondo, J. C. Losada and R. M. Benito, Efficiency of human activity on information spreading on Twitter, Social Networks, 39 (2014), 1-11.doi: 10.1016/j.socnet.2014.03.007.

    [15]

    M. E. J. Newman, Modularity and community structure in networks, Phys. Rev. E, 103 (2006), 8577-8582.doi: 10.1073/pnas.0601602103.

    [16]

    M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 (2003), 026126, 13pp.doi: 10.1103/PhysRevE.67.026126.

    [17]

    D. Pastor, A. J. Morales, Y. Torres, J. Bauer, A. Wadhwa, C. Castro-Correa, A. Calderón-Mariscal, L. Romanoff, J. Lee, A. Rutherford, V. Frias-Martinez, N. Oliver, E. Frias-Martinez and M. Luengo-Oroz, Flooding through the lens of mobile phone activity, in IEEE Global Humanitarian Technology Conference (GHTC), IEEE, 2014, 279-286.doi: 10.1109/GHTC.2014.6970293.

    [18]

    A. Pentland, Social Physics: How Good Ideas Spread. The Lessons From a New Science, Penguin Group (USA) Incorporated, 2014.

    [19]

    K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth and A. Aucinas, EmotionSense: A mobile phones based adaptive platform for experimental social psychology research, Proceedings of the 12th ACM International Conference on Ubiquitous Computing (New York, NY, USA), Ubicomp '10, ACM, 2010, 281-290.doi: 10.1145/1864349.1864393.

    [20]

    T. Sakaki, M. Okazaki and Y. Matsuo, Earthquake shakes twitter users: Real-time event detection by social sensors, Proceedings of the 19th International Conference on World Wide Web (New York, NY, USA), WWW '10, ACM, 2010, 851-860.doi: 10.1145/1772690.1772777.

    [21]

    J. L. Toole, M. Ulm, M. C González and D. Bauer, Inferring land use from mobile phone activity, in Proceedings of the ACM SIGKDD International Workshop on Urban Computing, ACM, 2012, 1-8.doi: 10.1145/2346496.2346498.

    [22]

    A. Wesolowski, et al., Quantifying the impact of human mobility on malaria, Science, 338 (2012), 267-270.

    [23]
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(279) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return