[1]
|
M. Abdul Salam, S. Taha and M. Ramadan, COVID-19 detection using federated machine learning, Public Library of Science San Francisco, 16 (2021), e0252573.
|
[2]
|
Agrawal and Pulkit, et al., Data platform for machine learning, Proceedings of the 2019 International Conference on Management of Data, (2019), 1803-1816.
|
[3]
|
S. Alam, L. Liu, M. Yan and M. Zhang, FedRolex: Model-heterogeneous federated learning with rolling sub-model extraction, preprint, (2022), arXiv: 2212.01548.
|
[4]
|
J. R. Amalraj and R. Lourdusamy, Security and privacy issues in federated healthcare - An overview, Open Comput. Science, 12 (2022), 57-65.
|
[5]
|
K. S. Arikumar, S. B. Prathiba, M. Alazab, T. R. Gadekallu, S. Pandya, J. M. Khan and R. S. Moorthy, Federated learning-based person movement identification through wearable devices in smart healthcare systems, Sensors, 22 (2022), 1377.
|
[6]
|
S. Baghersalimi, T. Teijeiro, D. Atienza and A. Aminifar, Personalized real-time federated learning for epileptic seizure detection, IEEE Journal of Biomedical and Health Informatics, 26 (2021), 898-909.
|
[7]
|
P. Baheti, M. Sikka, K. V. Arya and R. Rajesh, Federated learning on distributed medical records for detection of lung nodules, Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, (2020), 445-451.
|
[8]
|
D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, K. H. Li, T. Parcollet and P. P. B. de Gusmão, et al., Flower: A friendly federated learning framework, (2022).
|
[9]
|
A. Bhattacharya, R. Rana, V. Udutalapally and D. Das, CoviFL: Edge-assisted federated learning for remote COVID-19 detection in an AIoMT framework, IEEE Symposium on Computers and Communications (ISCC), (2022), 1-6.
|
[10]
|
T. Borger, et al., Federated learning for violence incident prediction in a simulated cross-institutional psychiatric setting, Expert Syst. Appl., 199 (2022), 2371-2392.
|
[11]
|
M. Chahoud, et al., A Dynamic and Efficient Multi-Criteria Federated Learning Client Deployment Scheme, 2022. Available from: http://arXiv.org/abs/2211.02906.
|
[12]
|
Y. Chang, C. Fang and W. Sun, et al., A blockchain-based federated learning method for smart healthcare, Computational Intelligence and Neuroscience, 2021, (2021).
|
[13]
|
Y. Chen, B. Wang, H. Jiang, P. Duan, Y. Ping and Z. Hong, PEPFL A framework for a practical and efficient privacy preserving federated learning, Digit Communication Networks, (2022).
|
[14]
|
T. K. Dang, X. Lan, J. Weng and M. Feng, Federated learning for electronic health records, ACM Trans. Internet Technol., 13 (2022), 1-17.
|
[15]
|
E. Darzidehkalani, M. Ghasemi-rad and P. m. a. van Ooijen, Federated learning in medical imaging. Part II: Methods, challenges, and considerations, Journal of the American College of Radiology, 19 (2022), 975-982.
|
[16]
|
Q. Dou, T. Y. So, M. Jiang, Q. Liu, V. Vardhanabhuti, G. Kaissis, Z. Li, W. Si, H. H. Lee and K. Yu, et al., Federated deep learning for detecting covid lung abnormalities, NPJ Digital Medicine, 4 (2021), 60.
|
[17]
|
R. Durga and E. Poovammal, FLED-block: Federated learning ensembled deep learning blockchain model for COVID-19 prediction, Frontiers in Public Health, 10 (2022).
|
[18]
|
I. Feki, S. Ammar, Y. Kessentini and K. Muhammad, Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information, Elsevier Connect, (2020).
|
[19]
|
L. Gao, L. Li, Y. Chen, C. Z. Xu and M. Xu, FGFL A blockchain-based fair incentive governor for federated learning, IEEE Sens., 163 (2022), 283-299.
|
[20]
|
A. Giuseppi, L. Della Torre, D. Menegatti, F. D. Priscoli, A. Pietrabissa and C. Poli, An adaptive model averaging procedure for federated learning, J. Adv. Inf. Technology, 13 (2022), 539-548.
|
[21]
|
A. Giuseppi, S. Manfredi, D. Menegatti, C. Poli and A. Pietrabissa, Decentralised federated learning for hospital networks with application to COVID 19 detection, IEEE Accessy, 10 (2022), 92681-92691.
|
[22]
|
C. R. Hansen, G. Price, M. Field, N. Sarup, R. Zukauskaite, J. Johansen, J. G. Eriksen, F. Aly, A. McPartlin and L. Holloway, et al., Larynx cancer survival model developed through open-source federated learning, Radiotherapy and Oncology, 176 (2022), 179-186.
|
[23]
|
A. L Heureux, K. Grolinger, H. F. Elyamany and M. A. M. Capretz, Machine learning with big data: Challenges and approaches, IEEE Access, 5 (2017), 7776-7797.
|
[24]
|
T.-T. Ho, K.-D. Tran and Y. Huang, FedSGDCOVID: Federated SGD COVID-19 detection under local differential privacy using chest X-ray images and symptom information, Sensors, 22 (2022), 3728.
|
[25]
|
M. N. Hossen, V. Panneerselvam, D. Koundal, K. Ahmed, F. M. Bui and S. M. Ibrahim, Federated machine learning for detection of skin diseases and enhancement of internet of medical things (IoMT) security, IEEE Journal of Biomedical and Health Informatics, (2022).
|
[26]
|
Y. Huang, et al., Personalized cross-silo federated learning on non-iid data, Proceedings of the AAAI Conference on Artificial Intelligence, 35 (2021), 7865-7873.
|
[27]
|
L. Hu, H. Yan, L. Li, Z. Pan, X. Liu and Z. Zhang, MHAT An efficient model-heterogenous aggregation training scheme for federated learning, Inf. Sci. (Ny), 560 (2021), 493-503.
|
[28]
|
O. Ibitoye, M. O. Shafiq and A. Matrawy, DiPSeN: Differentially private self-normalizing neural networks for adversarial robustness in federated learning, preprint, (2021), arXiv: 2101.03218.
|
[29]
|
S. M. Jalal, M. R. Hasan, M. A. Haque and M. G. R. Alam, A horizontal federated random forest for heart disease detection from decentralized local data, IEEE 10th Region 10 Humanitarian Technology Conference R10 HTC, (2022), 191-196.
|
[30]
|
S. Ji, S. Pan, G. Long, X. Li, J. Jiang and Z. Huang, Learning private neural language modeling with attentive aggregation, Proc. Int. Jt. Conf. Neural Networks, (2019).
|
[31]
|
S. Ji, T. Saravirta, S. Pan, G. Long and A. Walid, Emerging trends in federated learning: From model fusion to federated x learning, preprint, (2021), arXiv: 2102.12920.
|
[32]
|
A. Jiménez-Sánchez, M. Tardy, M. A. G. Ballester and G. Piella, Memory-aware curriculum federated learning for breast cancer classification, Computer Methods and Programs in Biomedicine, 229 (2023), 107318.
|
[33]
|
M. Joshi, A. Pal and M. Sankarasubbu, Federated learning for healthcare domain - Pipeline, applications and challenges, ACM Transactions on Computing for Healthcare, 3 (2022), 1-36.
|
[34]
|
P. Kairouz, H. B. McMahan and B. AvenT, et al., Advances and Open Problems in Federated Learning, 2019. Available from: http://arXiv.org/abs/1912.04977.
|
[35]
|
S. H. Khan and M. G. R. Alam, A federated learning approach to pneumonia detection, International Conference on Engineering and Emerging Technologies (ICEET), (2021), 1-6.
|
[36]
|
C. Koetsier, J. Fiosina, J. N. Gremmel, J. P. Müller, D. M. Woisetschläger and M. Sester, Detection of anomalous vehicle trajectories using federated learning, ISPRS Open J. Photogramm. Remote Sens., 4 (2022), 1000013.
|
[37]
|
N. Kotsehub, et al., FLoX federated learning with FaaS at the edge, Proceedings of IEEE 18th Int. Conference e Science, (2022), 11-20.
|
[38]
|
R. Kumar, et al., Blockchain federated learning and deep learning models for COVID 19 detection using CT imaging, IEEE Sens., 21 (2022), 16301-16314.
|
[39]
|
M. Kumar and A. Singh, Probabilistic data structures in smart city: Survey, applications, challenges, and research directions, J. Ambient Intell. Smart Environ., 14 (2022), 229-284.
|
[40]
|
T. T. Kuo and A. Pham, Detecting model misconducts in decentralized healthcare federated learning, Int. J. Med. Inform., 158 (2022), 104658.
|
[41]
|
W. Lee, Reward-based participant selection for improving federated reinforcement learning, ICT Express, (2022).
|
[42]
|
T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar and V. Smith, Federated optimization in heterogeneous networks, preprint, (2018), arXiv: 1812.06127.
|
[43]
|
T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar and V. Smith, Federated optimization in heterogeneous networks, preprint, (2018), arXiv: 1812.06127.
|
[44]
|
Y. Liu, J. Nie, X. Li, S. H. Ahmed, W. Y. B. Lim, and C. Miao, Federated Learning in the Sky: Aerial-Ground Air Quality Sensing Framework with UAV Swarms, IEEE Internet Things, 8 (2021), 9827–9837.
|
[45]
|
J. Liu, X. Liang, R. Yang, Y. Luo, H. Lu, L. Li, S. Zhang and S. Yang, Federated learning-based vertebral body segmentation, Engineering Applications of Artificial Intelligence, 116 (2022), 105451.
|
[46]
|
Li u, J. Cheng, X. Wang, X. Lu and J. Yin, Hybrid differential privacy based federated learning for internet of things, J. Syst. Archit, 124 (2022), 102418.
|
[47]
|
J. Lo, et al., Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data, Ophthalmol. Sci., 1 (2021), 100069.
|
[48]
|
H. Ludwig, et al., Ibm federated learning: An enterprise framework white paper v0. 1, preprint, (2020), arXiv: 2007.10987.
|
[49]
|
H. B. Mcmahan, F. X. Yu, A. T. Suresh, D. Bacon and P. Richt, C. O. E. Fficiency, F$1$ S. I. C. E, (2017), 1-10.
|
[50]
|
D. G. Nair, J. J. Nair, K. J. Reddy and C. A. Narayana, A privacy preserving diagnostic collaboration framework for facial paralysis using federated learning, Engineering Applications of Artificial Intelligence, 116 (2022), 105476.
|
[51]
|
M. Nasajpour, M. Karakaya, S. Pouriyeh and R. M. Parizi, Federated transfer learning for diabetic retinopathy detection using CNN architectures, SoutheastCon 2022, (2022), 655-660.
|
[52]
|
S. Naz, K. T. Phan and Y. P. P. Chen, A comprehensive review of federated learning for COVID-19 detection, Int. J. Intell. Syst., 37 (2022), 2371-2392.
|
[53]
|
T. Ngo, D. C. Nguyen, P. N. Pathirana, L. A. Corben, M. B. Delatycki, M. Horne, D. J. Szmulewicz and M. Roberts, Federated deep learning for the diagnosis of cerebellar ataxia: Privacy preservation and auto-crafted feature extractor, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30 (2022), 803-811.
|
[54]
|
L. T. Nguyen, J. Kim and B. Shim, Gradual federated learning with simulated annealing, IEEE Transactions on Signal Processing, 69 (2021), 6299-6313.
|
[55]
|
A. Nilsson, S. Smith, G. Ulm, E. Gustavsson and M. Jirstrand, A performance evaluation of federated learning algorithms, Proc. 2nd Work. Distrib. Infrastructures Deep Learn. Part Middlew, (2018), 1-18.
|
[56]
|
L. Peng, N. Wang, N. Dvornek, X. Zhu and X. Li, Fedni: Federated graph learning with network inpainting for population-based disease prediction, IEEE Transactions on Medical Imaging, (2022)
|
[57]
|
B. Pfitzner, N. Steckhan and B. Arnrich, Federated learning in a medical context a systematic literature review, ACM Trans. Internet Technol., 21 (2021), 1-31.
|
[58]
|
D. Połap and M. Woźniak, A hybridization of distributed policy and heuristic augmentation for improving federated learning approach, Neural Networks, 146 (2022), 130-140.
|
[59]
|
A. Qayyum, K. Ahmad, M. A. Ahsan, A. Al-Fuqaha and J. Qadir, Collaborative federated learning for healthcare: Multi-modal covid-19 diagnosis at the edge, IEEE Open Journal of the Computer Society, 3 (2022), 172-184.
|
[60]
|
F. Qian and A. Zhang, The value of federated learning during and post-COVID-19, International Journal for Quality in Health Care, 33 (2021).
|
[61]
|
S. Reddi, et al., Adaptive Federated Optimization, 2020. Available from: http://arXiv.org/abs/2003.00295.
|
[62]
|
H. Ren, D. Anicic and T. A. Runkler, TinyReptile: TinyML with federated meta-learning, preprint, (2023), arXiv: 2304.05201.
|
[63]
|
N. Rieke, et al., The future of digital health with federated learning, NPJ Digital Medicine, 3 (2020), 119.
|
[64]
|
O. Rudovic, et al., Personalized federated deep learning for pain estimation from face images, preprint, (2021), arXiv: 2101.04800.
|
[65]
|
M. Shaheen, M. S. Farooq, T. Umer and and B. S. Kim, Applications of federated learning. Taxonomy, challenges, and research trends, Electron., 11 (2022), 670.
|
[66]
|
H. Shamseddine, S. Otoum and A. Mourad, A federated learning scheme for neuro-developmental disorders: Multi-aspect ASD detection, preprint, (2022), arXiv: 2211.00643.
|
[67]
|
M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou, M. Milchenko, W. Xu, D. Marcus and R. R. Colen, et al., Federated learning in medicine facilitating multi institutional collaborations without sharing patient data, Springer, 10 (2020), 1-12.
|
[68]
|
P. P. Shinde, A review of machine learning and deep learning applications, Fourth Int. Conf. Comput. Commun. Control Autom., (2018), 1-6.
|
[69]
|
S. Shukla and N. Srivastava, Federated matched averaging with information-gain based parameter sampling, preprint, (2021).
|
[70]
|
S. Singh, Federated Optimization Algorithms FedSGD and FedAvg, 2023. Available from: https: //shreyansh26.github.io/post/2021-12-18_federated_optimization_fedavg/.
|
[71]
|
K. Singhal, H. Sidahmed, Z. Garrett, S. Wu, K. Rush and S. Prakash, Federated reconstruction: Partially local federated learning, Adv. Neural Inf. Process, 14 (2021), 11220-11231.
|
[72]
|
C. Thapa, P. C. M. Arachchige, S. Camtepe and L. Sun, SplitFed when federated learning meets split learning, Proc. 36th AAAI Conf. Artif. Intell. AAAI 2022, 36 (2021), 8485-8493.
|
[73]
|
N. Thapa, Z. Liu, D. B. Kc, B. Gokaraju and K. Roy, Comparison of machine learning and deep learning models for network intrusion detection systems, Futur. Internet, 12 (2020), 1-16.
|
[74]
|
H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos and Y. Khazaeni, Federated Learning with Matched Averaging, 2020. Available from: http://arXiv.org/abs/2002.06440.
|
[75]
|
X. Wu, Z. Liang and J. Wang, Fedmed A federated learning framework for language modeling, Sensors (Switzerland), 20 (2020), 1-17.
|
[76]
|
X. Wu, F. Huang, Z. Hu and H. Huang, Faster adaptive federated learning, preprint, (2022), arXiv: 2212.00974.
|
[77]
|
B. Xiong, X. Yang, F. Qi and C. Xu, A unified framework for multi-modal federated learning, Neurocomputing, 480 (2022), 110-118.
|
[78]
|
J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian and F. Wang, Federated learning for healthcare informatics, J. Healthc. Informatics Res., 5 (2021).
|
[79]
|
X. Xu, H. Peng, L. Sun, M. Z. A. Bhuiyan, L. Liu and L. He, Fedmood: Federated learning on mobile health data for mood detection, preprint, (2021), arXiv: 2102.09342.
|
[80]
|
D. Yang, Z. Xu, W. Li, A. Myronenko and H. R. Roth, Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information, Elsevier, (2020).
|
[81]
|
Z. Yang, M. Chen, K. K. Wong, H. V. Poor and S. Cui, Federated learning for 6G: Applications, challenges, and opportunities, Engineering Elsevier Ltd., 8 (2022), 33-41.
|
[82]
|
Q. Yng, et al., Vertical federated learning, Fed. Learn., (2020), 69-82.
|
[83]
|
T. Yu, E. Bagdasaryan and V. Shmatikov, Salvaging Federated Learning by Local Adaptation,
|
[84]
|
B. Yuan, S. Ge and W. Xing, A federated learning framework for healthcare iot devices, preprint, (2020), arXiv: 2005.05083.
|
[85]
|
X. Yuan, J. Zhang, J. Luo, J. Chen, Z. Shi and M. Qin, An efficient digital twin assisted clustered federated learning algorithm for disease prediction, IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), (2022), 1-6.
|
[86]
|
X.-T. Yuan and P. Li, On convergence of FedProx: Local dissimilarity invariant bounds, non-smoothness and beyond, preprint, (2018), arXiv: 2206.05187.
|
[87]
|
W. Zhang, et al., Dynamic-fusion-based federated learning for COVID-19 detection, IEEE Internet Things, 8 (2021), 15884-15891. 2020. Available from: http://arXiv.org/abs/2002.04758.
|
[88]
|
Y. Zhu, Z. Liu, P. Wang and C. Du, A dynamic incentive and reputation mechanism for energy-efficient federated learning in 6g, Digital Communications and Networks, (2022).
|
[89]
|
FedML-AI/FedML: FedML, 2023. Available from: https: //github.com/FedML-AI/FedML.
|
[90]
|
GitHub - Tensorflow/federated A Framework for Implementing Federated Learning, 2023. Available from: https: //github.com/tensorflow/federated.
|
[91]
|
Substra documentation–Substra 0.24.0 documentation, 2023. Available from: https: //docs.substra.org/en/stable/.
|
[92]
|
GitHub FederatedAI FATE An Industrial Grade Federated Learning Framework, 2023. Available from: https: //github.com/FederatedAI/FATE.
|
[93]
|
GitHub Arafeh94 Localfed, 2023. Available from: https: //github.com/arafeh94/localfed.
|