Difficulty level | Removed electrodes | ||
1 | - | 76 | 76 |
2 | 1, 2 | 56 | 56 |
3 | 1, 2, 3, 4 | 52 | 52 |
4 | 1, ..., 6 | 48 | 48 |
5 | 1, ..., 8 | 44 | 44 |
6 | 1, ..., 10 | 30 | 30 |
7 | 1, ..., 12 | 27 | 27 |
This paper introduces the Kuopio Tomography Challenge 2023 (KTC 2023), created to inspire and facilitate algorithm development for image reconstruction in electrical impedance tomography (EIT). A laboratory EIT dataset was prepared for the KTC 2023, using conductive and resistive inclusions of various shapes and sizes placed inside a shallow, circular water tank. The task for the competitors of the challenge was to produce segmented images of the inclusions from EIT data in cases of complete coverage of the tank surface with electrodes (lowest level of difficulty) and in cases of decreasing boundary coverage (corresponding to increasing level of challenge difficulty). A total of seven teams, with members from seven countries, participated in KTC 2023, submitting a total of 22 algorithms. The results of the competition show a variety of novel algorithms applied to real EIT data, with high quality image reconstructions from limited boundary data. The EIT data set collected for the challenge is publicly available for future studies on EIT image reconstruction.
Citation: |
Figure 6. Left: Photo of the water tank with a single resistive plastic inclusion (blue color) and a single conductive plastic inclusion (orange color). Right: The 256 by 256 ground truth image with the inner boundary of the tank (dashed red line) and the center point of electrode 1 (red, filled circle)
Table 1.
Electrode data removed in each difficulty level. Here,
Difficulty level | Removed electrodes | ||
1 | - | 76 | 76 |
2 | 1, 2 | 56 | 56 |
3 | 1, 2, 3, 4 | 52 | 52 |
4 | 1, ..., 6 | 48 | 48 |
5 | 1, ..., 8 | 44 | 44 |
6 | 1, ..., 10 | 30 | 30 |
7 | 1, ..., 12 | 27 | 27 |
Table 2. Scores for the evaluation dataset obtained by the example reconstruction algorithm
Level | Sample A | Sample B | Sample C | Total |
1 | 0.74366 | 0.64263 | 0.40896 | 1.79526 |
2 | 0.43108 | 0.22285 | 0.39186 | 1.04580 |
3 | 0.03469 | 0.67738 | 0.04147 | 0.75355 |
4 | 0.39865 | 0.17563 | 0.38461 | 0.95890 |
5 | 0.21297 | 0.27110 | 0.19635 | 0.68043 |
6 | 0.37339 | 0.20651 | 0.18207 | 0.76198 |
7 | -0.04006 | 0.17774 | 0.36839 | 0.50606 |
Table 3. Scores for each sample of the evaluation dataset
Team | Sample | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 | Level 7 |
0.96022 | 0.89867 | 0.6643 | 0.74566 | 0.18621 | 0.77558 | 0.32852 | ||
0.95039 | 0.69985 | 0.87397 | 0.43677 | 0.60947 | 0.50172 | 0.15754 | ||
0.82262 | 0.89145 | 0.55774 | 0.60814 | 0.30516 | 0.25955 | 0.73562 | ||
0.97251 | 0.82065 | 0.35046 | 0.79256 | 0.14521 | 0.72385 | 0.22862 | ||
0.91261 | 0.76015 | 0.84484 | 0.34345 | 0.13734 | 0.45158 | 0.32337 | ||
0.81064 | 0.71778 | 0.54393 | 0.20099 | 0.60858 | 0.32503 | 0.72188 | ||
0.92357 | 0.93093 | 0.095934 | 0.65215 | 0.32268 | 0.75603 | 0.21424 | ||
0.90302 | 0.69122 | 0.85972 | 0.3158 | 0.1298 | 0.50926 | 0.53206 | ||
0.81248 | 0.43986 | 0.5924 | 0.55071 | 0.71876 | 0.22107 | 0.30813 | ||
0.9543 | 0.9061 | 0.16182 | 0.72593 | 0.34726 | 0.79047 | 0.28903 | ||
0.97966 | 0.76502 | 0.86991 | 0.49435 | 0.10537 | 0.55468 | 0.35868 | ||
0.84124 | 0.92168 | 0.60296 | 0.46234 | 0.23622 | 0.19323 | 0.24486 | ||
0.94759 | 0.83111 | 0.097536 | 0.64512 | 0.34038 | 0.67726 | 0.22933 | ||
0.95374 | 0.62278 | 0.89066 | 0.35399 | 0.63045 | 0.50848 | 0.24818 | ||
0.77218 | 0.85234 | 0.55082 | 0.59148 | 0.66317 | 0.19497 | 0.75289 | ||
0.9395 | 0.78964 | 0.16184 | 0.53982 | 0.29484 | 0.66331 | 0.20619 | ||
0.88266 | 0.66224 | 0.85737 | 0.35005 | 0.10124 | 0.46223 | 0.38249 | ||
0.78311 | 0.77796 | 0.54221 | 0.45008 | 0.63658 | 0.18085 | 0.74966 | ||
0.70129 | 0.69321 | 0.67504 | 0.60476 | 0.16392 | 0.58817 | 0.40335 | ||
0.74008 | 0.6715 | 0.58318 | 0.0049623 | 0.0051137 | 0.10121 | 0.0020536 | ||
0.84037 | 0.63107 | 0.49829 | 0.13559 | 0.3429 | 0.2353 | 0.59488 | ||
0.67071 | 0.69062 | 0.00022063 | 0.70433 | 0.21532 | 0.59601 | 0.40447 | ||
0.75342 | 0.79923 | 0.6854 | 0.0047347 | 0.0051137 | 0.24267 | 0.12096 | ||
0.85153 | 0.64599 | 0.4965 | 0.17775 | 0.59038 | 0.22363 | 0.6039 | ||
0.96012 | 0.83245 | 0.18944 | 0.67692 | 0.46376 | 0.68013 | 0.29482 | ||
0.928 | 0.88034 | 0.90873 | 0.51759 | 0.2772 | 0.49687 | 0.59512 | ||
0.43078 | 0.86668 | 0.7769 | 0.43049 | 0.73585 | 0.29868 | 0.80019 | ||
0.95063 | 0.723 | 0.20296 | 0.58708 | 0.45519 | 0.60342 | 0.23514 | ||
0.76766 | 0.87723 | 0.88354 | 0.42999 | 0.28303 | 0.45394 | 0.53747 | ||
0.3791 | 0.77866 | 0.67881 | 0.4439 | 0.6831 | 0.38215 | 0.77077 | ||
0.74082 | 0.70654 | 0.63096 | 0.67211 | 0.37867 | 0.40685 | 0.46816 | ||
0.78706 | 0.74854 | 0.77409 | 0.40437 | 0.0051149 | 0.41118 | 0.15005 | ||
0.8313 | 0.70894 | 0.57827 | 0.29434 | 0.45781 | 0.18463 | 0.64957 | ||
0.31726 | 0.71536 | 0.039398 | 0.0275 | 0.04735 | 0.55186 | -0.016521 | ||
0.74241 | 0.078789 | 0.74837 | 0.093607 | 0.072756 | 0.063483 | 0.016966 | ||
0.1979 | 0.63888 | 0.50679 | 0.38619 | 0.63042 | 0.15272 | 0.040005 | ||
0.93263 | 0.91325 | 0.42413 | 0.76044 | 0.14708 | 0.65121 | 0.20317 | ||
0.80267 | 0.75273 | 0.82493 | 0.34089 | 0.59773 | 0.053328 | 0.17242 | ||
0.83335 | 0.83655 | 0.52072 | 0.65756 | 0.60804 | -0.011826 | 0.75069 | ||
0.62816 | 0.54254 | 0.53309 | 0.33792 | 0.056015 | 0.56261 | 0.26702 | ||
0.62809 | 0.53061 | 0.63073 | 0.10184 | 0.53474 | 0.13624 | 0.091781 | ||
0.57522 | 0.56074 | 0.50374 | 0.2563 | 0.03376 | 0.20809 | 0.52682 | ||
0.82986 | 0.92322 | 0.034751 | 0.45707 | 0.32957 | 0.23335 | 0.016423 | ||
0.85027 | 0.32074 | 0.80436 | 0.38807 | 0.076231 | 0.039543 | 0.099949 | ||
0.84768 | 0.90828 | 0.62383 | 0.26928 | 0.37191 | -0.011823 | 0.68647 | ||
0.94287 | 0.26324 | 0.64302 | 0.52486 | 0.27899 | 0.24078 | 0.18025 | ||
0.89078 | 0.62664 | 0.40502 | 0.22462 | 0.57887 | 0.22329 | 0.2018 | ||
0.28965 | 0.75373 | 0.52108 | 0.52755 | 0.16606 | 0.11553 | 0.70783 | ||
0.92474 | 0.92357 | 0.55259 | 0.78262 | 0.41037 | 0.76931 | 0.38347 | ||
0.96431 | 0.8366 | 0.86621 | 0.64495 | 0.8653 | 0.64495 | 0.22513 | ||
0.83624 | 0.88801 | 0.85767 | 0.43116 | 0.78104 | 0.56085 | 0.81422 | ||
0.98701 | 0.92507 | 0.7828 | 0.70106 | 0.5266 | 0.63942 | 0.49924 | ||
0.96612 | 0.85026 | 0.94716 | 0.66409 | 0.88019 | 0.69662 | 0.33437 | ||
0.89048 | 0.91984 | 0.89483 | 0.57398 | 0.80711 | 0.67289 | 0.86934 | ||
0.98627 | 0.92142 | 0.74469 | 0.7508 | 0.43544 | 0.78684 | 0.5849 | ||
0.96342 | 0.79049 | 0.92438 | 0.67478 | 0.81362 | 0.47867 | 0.32063 | ||
0.83909 | 0.9238 | 0.87488 | 0.45797 | 0.83364 | 0.57153 | 0.8739 | ||
0.95804 | 0.7628 | 0.12818 | 0.32632 | 0.23696 | 0.090063 | 0.11749 | ||
0.94151 | 0.10898 | 0.37218 | 0.24965 | 0.14233 | 0.25999 | 0.21642 | ||
0.32321 | 0.66734 | 0.51948 | 0.21429 | 0.53912 | 0.14121 | 0.22274 | ||
0.96217 | 0.9236 | 0.25007 | 0.5347 | 0.24355 | 0.20699 | 0.34255 | ||
0.98301 | 0.79505 | 0.25037 | 0.43474 | 0.15299 | 0.32765 | 0.26197 | ||
0.83442 | 0.9243 | 0.72187 | 0.2231 | 0.79925 | 0.24585 | 0.25705 | ||
0.98101 | 0.83101 | 0.24815 | 0.5074 | 0.17852 | 0.28831 | 0.33178 | ||
0.9162 | 0.76933 | 0.2601 | 0.52666 | 0.16415 | 0.38689 | 0.26087 | ||
0.34009 | 0.84241 | 0.67362 | 0.31698 | 0.40674 | 0.23883 | 0.28641 |
Table 4. The scores obtained by each solution for each difficulty level, and the leaderboard positions of the teams. We note that the drop-out feature explained in the scoring rules of the challenge affected the leaderboard positions, such that the positions are not completely ordered according to the Total Scores only
Team | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 | Level 7 | Total score | Position |
2.7332 | 2.49 | 2.096 | 1.7906 | 1.1008 | 1.5369 | 1.2217 | 12.9692 | 2nd | |
2.6958 | 2.2986 | 1.7392 | 1.337 | 0.89113 | 1.5005 | 1.2739 | 11.7361 | ||
2.6391 | 2.062 | 1.5481 | 1.5187 | 1.1712 | 1.4864 | 1.0544 | 11.4798 | ||
2.7752 | 2.5928 | 1.6347 | 1.6826 | 0.68885 | 1.5384 | 0.89256 | 11.8051 | ||
2.6735 | 2.3062 | 1.539 | 1.5906 | 1.634 | 1.3807 | 1.2304 | 12.3545 | ||
2.6053 | 2.2298 | 1.5614 | 1.34 | 1.0327 | 1.3064 | 1.3383 | 11.4139 | ||
2.2817 | 1.9958 | 1.7565 | 0.74531 | 0.51193 | 0.92468 | 1.0003 | 9.2162 | ||
2.2757 | 2.1358 | 1.1821 | 0.88682 | 0.81082 | 1.0623 | 1.1293 | 9.4829 | ||
2.3189 | 2.5795 | 1.8751 | 1.625 | 1.4768 | 1.4757 | 1.6901 | 13.0411 | 2nd | |
2.0974 | 2.3789 | 1.7653 | 1.461 | 1.4213 | 1.4395 | 1.5434 | 12.1068 | ||
2.3592 | 2.164 | 1.9833 | 1.3708 | 0.8416 | 1.0027 | 1.2678 | 10.9894 | ||
1.2576 | 1.433 | 1.2946 | 0.5073 | 0.75052 | 0.76806 | 0.04045 | 6.0515 | 6th | |
2.5686 | 2.5025 | 1.7698 | 1.7589 | 1.3528 | 0.69271 | 1.1263 | 11.7717 | 3rd | |
1.8315 | 1.6339 | 1.6676 | 0.69606 | 0.62452 | 0.90694 | 0.88562 | 8.2461 | ||
2.5278 | 2.1522 | 1.4629 | 1.1144 | 0.77772 | 0.26107 | 0.80284 | 9.099 | ||
2.1233 | 1.6436 | 1.5691 | 1.277 | 1.0239 | 0.5796 | 1.0899 | 9.3065 | 4th | |
2.7253 | 2.6482 | 2.2765 | 1.8587 | 2.0567 | 1.9751 | 1.4228 | 14.9633 | ||
2.8436 | 2.6952 | 2.6248 | 1.9391 | 2.2139 | 2.0089 | 1.703 | 16.0285 | 1st | |
2.7888 | 2.6357 | 2.5439 | 1.8836 | 2.0827 | 1.837 | 1.7794 | 15.5512 | ||
2.2228 | 1.5391 | 1.0198 | 0.79026 | 0.9184 | 0.49126 | 0.55665 | 7.5383 | ||
2.7796 | 2.643 | 1.2223 | 1.1925 | 1.1958 | 0.78049 | 0.86157 | 10.6753 | 5th | |
2.2373 | 2.4427 | 1.1819 | 1.351 | 0.74942 | 0.91403 | 0.87905 | 9.7555 |
[1] | A. Alghamdi, M. Carøe, J. Everink, J. Jørgensen, K. Knudsen, J. Nielsen, A. Rasmussen, R. Sørensen and C. Zhang, Spatial regularization and level-set methods for experimental electrical impedance tomography with partial data, Applied Mathematics for Modern Challenges. |
[2] | D. C. Barber and B. H. Brown, Errors in reconstruction of resistivity images using a linear reconstruction technique, Clinical Physics and Physiological Measurement, 9 (1988), 101-104. doi: 10.1088/0143-0815/9/4A/017. |
[3] | R. Beraldo, L. Ferreira, F. de Moura, A. Takahata and R. Suyama, Post-processing electrical impedance tomography reconstructions with incomplete data using convolutional neural networks, Applied Mathematics for Modern Challenges, 2024. doi: 10.3934/ammc.2024008. |
[4] | K. S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924. doi: 10.1109/10.35300. |
[5] | Code for KTC2023 EIT challenge (end-to-end + PnP), 2023. Available from: https://github.com/msantacesaria/KTC2023_PNPE2E. |
[6] | Code for KTC2023 EIT challenge (end-to-end), 2023. Available from: https://github.com/lucala00/KTC2023_E2E. |
[7] | Code for KTC2023 EIT challenge (Plug & Play + mask), 2023. Available from: https://github.com/lucala00/KTC2023_PNPmasked. |
[8] | Deep image prior with total variation regularization to reconstruct Electrical Impedance Tomography images from limited data, 2023. Available from: https://github.com/robert-abc/KTC2023-ABC2. |
[9] | F. de Moura, S. Siltanen and M. Juvonen, Helsinki Deblur Challenge 2021 (HDC20201) IPI Special Issue preface, Inverse Problems and Imaging, 17 (2023), i-iii. doi: 10.3934/ipi.2023028. |
[10] | A. Denker, Z. Keretam I. Singh, T. Freudenberg, T. Kluth, P. Maass and S. Arridge, Data-driven approaches for electrical impedance tomography image segmentation from partial boundary data, Applied Mathematics for Modern Challenges, 2024. doi: 10.3934/ammc.2024005. |
[11] | EIT, 2023. Available from: https://gitlab.com/brandtannachristina/eit. |
[12] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI1. |
[13] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI2. |
[14] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI3. |
[15] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI4. |
[16] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI5. |
[17] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI6. |
[18] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI7. |
[19] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI8. |
[20] | EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI9. |
[21] | Eit MultibangSegmentation, 2023. Available from: https://gitlab.com/brandtannachristina/eit_multibangSegmentation. |
[22] | EIT_Challenge_2023, 2023. Available from: https://github.com/MonicaPragliola/EIT_Challenge_2023. |
[23] | EIT_multibangTV_Segmentation, 2023. Available from: https://gitlab.com/brandtannachristina/eit_multibangtv_segmentation. |
[24] | A. Hauptmann, V. Kolehmainen, M. Mach, T. Savolainen, A. Seppänen, and S. Siltanen, Open 2D electrical impedance tomography data archive, preprint, 2017, arXiv: 1704.01178. |
[25] | J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci., 160, Springer-Verlag, New York, 2005. doi: 10.1007/b138659. |
[26] | J. Kourunen, T. Savolainen, A. Lehikoinen, M. Vauhkonen and L. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2009), 015503. doi: 10.1088/0957-0233/20/1/015503. |
[27] | Kuopio Tomography Challenge 2023 open electrical impedance tomographic dataset, 2024. Available from: https://zenodo.org/records/10986692. |
[28] | A. Lipponen, A. Seppänen and J. Kaipio, Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition, Journal of Electronic Imaging, 22 (2013), 023008. doi: 10.1117/1.JEI.22.2.023008. |
[29] | A. Meaney, F. de Moura, M. Juvonen and S. Siltanen, Helsinki tomography challenge 2022: Description of the competition and dataset, Applied Mathematics for Modern Challenges, 1 (2023), 170-201. doi: 10.3934/ammc.2023010. |
[30] | Ohm-azing Shock Troopers Kuopio Tomography Challenge, 2023. Available from: https://github.com/nlinthacum/Ohm-azing-Shock-Troopers-Kuopio-Tomography-Challenge. |
[31] | N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9 (1979), 62-66. doi: 10.1109/TSMC.1979.4310076. |
[32] | Post-processing electrical impedance tomography reconstructions with incomplete data using convolutional neural networks (Source code), 2023. Available from: https://github.com/robert-abc/KTC2023-ABC1. |
[33] | V. Pratt, Direct least-squares fitting of algebraic surfaces, Computer Graphics, 21 (1987), 145-152. doi: 10.1145/37402.37420. |
[34] | E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040. doi: 10.1137/0152060. |
[35] | Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_fcunet. |
[36] | Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_postprocessing. |
[37] | Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_conditional_diffusion. |
[38] | P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160. doi: 10.1109/10.784147. |
[39] | Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli, Image quality assessment: From error measurement to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861. |
Left: Photograph of the water tank before water and inclusions were added. Right: Experimental setup; The KIT4 EIT system is behind the table where the tank is placed. Photographs of the targets were taken from straight above the tank using camera fixed to a frame attached on the ceiling
Photographs of the four non-homogeneous targets used for the training data set. The significance of colors: Red – metallic, orange – conductive plastic and blue – insulating plastic
Photographs of the targets used for the evaluation data: Rows 1–4 correspond to difficulty levels 1–4. Photos in columns 1–3 correspond to samples A-C in each of the difficulty levels. The significance of colors: Red – metallic, orange – conductive plastic and blue – insulating plastic
Photographs of the targets used for the evaluation data: Rows 1–3 correspond to difficulty levels 5–7. Photos in columns 1–3 correspond to samples A-C in each of the difficulty levels. The significance of colors: Red – metallic, orange – conductive plastic and blue – insulating plastic
Positioning of the circular water chamber in the ground truth pixel images. The red line represents the inner boundary of the water chamber. The pixel size is exaggerated for the sake of illustration
Left: Photo of the water tank with a single resistive plastic inclusion (blue color) and a single conductive plastic inclusion (orange color). Right: The 256 by 256 ground truth image with the inner boundary of the tank (dashed red line) and the center point of electrode 1 (red, filled circle)
KTC 2023 results, difficulty level 1, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue
KTC 2023 results, difficulty level 2, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue
KTC 2023 results, difficulty level 3, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue
KTC 2023 results, difficulty level 4, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue
KTC 2023 results, difficulty level 5, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue
KTC 2023 results, difficulty level 6, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue
KTC 2023 results, difficulty level 7, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue