[1]
|
A. Alghamdi, M. Carøe, J. Everink, J. Jørgensen, K. Knudsen, J. Nielsen, A. Rasmussen, R. Sørensen and C. Zhang, Spatial regularization and level-set methods for experimental electrical impedance tomography with partial data, Applied Mathematics for Modern Challenges.
|
[2]
|
D. C. Barber and B. H. Brown, Errors in reconstruction of resistivity images using a linear reconstruction technique, Clinical Physics and Physiological Measurement, 9 (1988), 101-104.
doi: 10.1088/0143-0815/9/4A/017.
|
[3]
|
R. Beraldo, L. Ferreira, F. de Moura, A. Takahata and R. Suyama, Post-processing electrical impedance tomography reconstructions with incomplete data using convolutional neural networks, Applied Mathematics for Modern Challenges, 2024.
doi: 10.3934/ammc.2024008.
|
[4]
|
K. S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924.
doi: 10.1109/10.35300.
|
[5]
|
Code for KTC2023 EIT challenge (end-to-end + PnP), 2023. Available from: https://github.com/msantacesaria/KTC2023_PNPE2E.
|
[6]
|
Code for KTC2023 EIT challenge (end-to-end), 2023. Available from: https://github.com/lucala00/KTC2023_E2E.
|
[7]
|
Code for KTC2023 EIT challenge (Plug & Play + mask), 2023. Available from: https://github.com/lucala00/KTC2023_PNPmasked.
|
[8]
|
Deep image prior with total variation regularization to reconstruct Electrical Impedance Tomography images from limited data, 2023. Available from: https://github.com/robert-abc/KTC2023-ABC2.
|
[9]
|
F. de Moura, S. Siltanen and M. Juvonen, Helsinki Deblur Challenge 2021 (HDC20201) IPI Special Issue preface, Inverse Problems and Imaging, 17 (2023), i-iii.
doi: 10.3934/ipi.2023028.
|
[10]
|
A. Denker, Z. Keretam I. Singh, T. Freudenberg, T. Kluth, P. Maass and S. Arridge, Data-driven approaches for electrical impedance tomography image segmentation from partial boundary data, Applied Mathematics for Modern Challenges, 2024.
doi: 10.3934/ammc.2024005.
|
[11]
|
EIT, 2023. Available from: https://gitlab.com/brandtannachristina/eit.
|
[12]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI1.
|
[13]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI2.
|
[14]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI3.
|
[15]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI4.
|
[16]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI5.
|
[17]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI6.
|
[18]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI7.
|
[19]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI8.
|
[20]
|
EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI9.
|
[21]
|
Eit MultibangSegmentation, 2023. Available from: https://gitlab.com/brandtannachristina/eit_multibangSegmentation.
|
[22]
|
EIT_Challenge_2023, 2023. Available from: https://github.com/MonicaPragliola/EIT_Challenge_2023.
|
[23]
|
EIT_multibangTV_Segmentation, 2023. Available from: https://gitlab.com/brandtannachristina/eit_multibangtv_segmentation.
|
[24]
|
A. Hauptmann, V. Kolehmainen, M. Mach, T. Savolainen, A. Seppänen, and S. Siltanen, Open 2D electrical impedance tomography data archive, preprint, 2017, arXiv: 1704.01178.
|
[25]
|
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci., 160, Springer-Verlag, New York, 2005.
doi: 10.1007/b138659.
|
[26]
|
J. Kourunen, T. Savolainen, A. Lehikoinen, M. Vauhkonen and L. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2009), 015503.
doi: 10.1088/0957-0233/20/1/015503.
|
[27]
|
Kuopio Tomography Challenge 2023 open electrical impedance tomographic dataset, 2024. Available from: https://zenodo.org/records/10986692.
|
[28]
|
A. Lipponen, A. Seppänen and J. Kaipio, Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition, Journal of Electronic Imaging, 22 (2013), 023008.
doi: 10.1117/1.JEI.22.2.023008.
|
[29]
|
A. Meaney, F. de Moura, M. Juvonen and S. Siltanen, Helsinki tomography challenge 2022: Description of the competition and dataset, Applied Mathematics for Modern Challenges, 1 (2023), 170-201.
doi: 10.3934/ammc.2023010.
|
[30]
|
Ohm-azing Shock Troopers Kuopio Tomography Challenge, 2023. Available from: https://github.com/nlinthacum/Ohm-azing-Shock-Troopers-Kuopio-Tomography-Challenge.
|
[31]
|
N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9 (1979), 62-66.
doi: 10.1109/TSMC.1979.4310076.
|
[32]
|
Post-processing electrical impedance tomography reconstructions with incomplete data using convolutional neural networks (Source code), 2023. Available from: https://github.com/robert-abc/KTC2023-ABC1.
|
[33]
|
V. Pratt, Direct least-squares fitting of algebraic surfaces, Computer Graphics, 21 (1987), 145-152.
doi: 10.1145/37402.37420.
|
[34]
|
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.
doi: 10.1137/0152060.
|
[35]
|
Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_fcunet.
|
[36]
|
Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_postprocessing.
|
[37]
|
Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_conditional_diffusion.
|
[38]
|
P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160.
doi: 10.1109/10.784147.
|
[39]
|
Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli, Image quality assessment: From error measurement to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|