[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Kuopio tomography challenge 2023 – electrical impedance tomography competition and open dataset

  • *Corresponding author: Mikko Räsänen

    *Corresponding author: Mikko Räsänen 
Abstract / Introduction Full Text(HTML) Figure(13) / Table(4) Related Papers Cited by
  • This paper introduces the Kuopio Tomography Challenge 2023 (KTC 2023), created to inspire and facilitate algorithm development for image reconstruction in electrical impedance tomography (EIT). A laboratory EIT dataset was prepared for the KTC 2023, using conductive and resistive inclusions of various shapes and sizes placed inside a shallow, circular water tank. The task for the competitors of the challenge was to produce segmented images of the inclusions from EIT data in cases of complete coverage of the tank surface with electrodes (lowest level of difficulty) and in cases of decreasing boundary coverage (corresponding to increasing level of challenge difficulty). A total of seven teams, with members from seven countries, participated in KTC 2023, submitting a total of 22 algorithms. The results of the competition show a variety of novel algorithms applied to real EIT data, with high quality image reconstructions from limited boundary data. The EIT data set collected for the challenge is publicly available for future studies on EIT image reconstruction.

    Mathematics Subject Classification: Primary: 35R30, 65K05; Secondary: 90-06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Left: Photograph of the water tank before water and inclusions were added. Right: Experimental setup; The KIT4 EIT system is behind the table where the tank is placed. Photographs of the targets were taken from straight above the tank using camera fixed to a frame attached on the ceiling

    Figure 2.  Photographs of the four non-homogeneous targets used for the training data set. The significance of colors: Red – metallic, orange – conductive plastic and blue – insulating plastic

    Figure 3.  Photographs of the targets used for the evaluation data: Rows 1–4 correspond to difficulty levels 1–4. Photos in columns 1–3 correspond to samples A-C in each of the difficulty levels. The significance of colors: Red – metallic, orange – conductive plastic and blue – insulating plastic

    Figure 4.  Photographs of the targets used for the evaluation data: Rows 1–3 correspond to difficulty levels 5–7. Photos in columns 1–3 correspond to samples A-C in each of the difficulty levels. The significance of colors: Red – metallic, orange – conductive plastic and blue – insulating plastic

    Figure 5.  Positioning of the circular water chamber in the ground truth pixel images. The red line represents the inner boundary of the water chamber. The pixel size is exaggerated for the sake of illustration

    Figure 6.  Left: Photo of the water tank with a single resistive plastic inclusion (blue color) and a single conductive plastic inclusion (orange color). Right: The 256 by 256 ground truth image with the inner boundary of the tank (dashed red line) and the center point of electrode 1 (red, filled circle)

    Figure 7.  KTC 2023 results, difficulty level 1, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue

    Figure 8.  KTC 2023 results, difficulty level 2, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue

    Figure 9.  KTC 2023 results, difficulty level 3, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue

    Figure 10.  KTC 2023 results, difficulty level 4, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue

    Figure 11.  KTC 2023 results, difficulty level 5, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue

    Figure 12.  KTC 2023 results, difficulty level 6, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue

    Figure 13.  KTC 2023 results, difficulty level 7, Samples A, B and C. Conductive inclusions are in yellow, and insulating inclusions in light blue

    Table 1.  Electrode data removed in each difficulty level. Here, $ N_{ \text{inj}} $ is the number of current injections used in the difficulty level, and $ N_{ \text{meas}} $ is the total number of voltage measurements in the respective difficulty level

    Difficulty level Removed electrodes $ N_{ \text{inj}} $ $ N_{ \text{meas}} $
    1 - 76 76$ \cdot $31 = 2356
    2 1, 2 56 56$ \cdot $29 = 1624
    3 1, 2, 3, 4 52 52$ \cdot $27 = 1404
    4 1, ..., 6 48 48$ \cdot $25 = 1200
    5 1, ..., 8 44 44$ \cdot $23 = 1012
    6 1, ..., 10 30 30$ \cdot $21 = 630
    7 1, ..., 12 27 27$ \cdot $19 = 513
     | Show Table
    DownLoad: CSV

    Table 2.  Scores for the evaluation dataset obtained by the example reconstruction algorithm

    Level Sample A Sample B Sample C Total
    1 0.74366 0.64263 0.40896 1.79526
    2 0.43108 0.22285 0.39186 1.04580
    3 0.03469 0.67738 0.04147 0.75355
    4 0.39865 0.17563 0.38461 0.95890
    5 0.21297 0.27110 0.19635 0.68043
    6 0.37339 0.20651 0.18207 0.76198
    7 -0.04006 0.17774 0.36839 0.50606
     | Show Table
    DownLoad: CSV

    Table 3.  Scores for each sample of the evaluation dataset

    Team Sample Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
    $ 01_A $ $ S_n^A $ 0.96022 0.89867 0.6643 0.74566 0.18621 0.77558 0.32852
    $ S_n^B $ 0.95039 0.69985 0.87397 0.43677 0.60947 0.50172 0.15754
    $ S_n^C $ 0.82262 0.89145 0.55774 0.60814 0.30516 0.25955 0.73562
    $ 01_B $ $ S_n^A $ 0.97251 0.82065 0.35046 0.79256 0.14521 0.72385 0.22862
    $ S_n^B $ 0.91261 0.76015 0.84484 0.34345 0.13734 0.45158 0.32337
    $ S_n^C $ 0.81064 0.71778 0.54393 0.20099 0.60858 0.32503 0.72188
    $ 02_A $ $ S_n^A $ 0.92357 0.93093 0.095934 0.65215 0.32268 0.75603 0.21424
    $ S_n^B $ 0.90302 0.69122 0.85972 0.3158 0.1298 0.50926 0.53206
    $ S_n^C $ 0.81248 0.43986 0.5924 0.55071 0.71876 0.22107 0.30813
    $ 02_B $ $ S_n^A $ 0.9543 0.9061 0.16182 0.72593 0.34726 0.79047 0.28903
    $ S_n^B $ 0.97966 0.76502 0.86991 0.49435 0.10537 0.55468 0.35868
    $ S_n^C $ 0.84124 0.92168 0.60296 0.46234 0.23622 0.19323 0.24486
    $ 02_C $ $ S_n^A $ 0.94759 0.83111 0.097536 0.64512 0.34038 0.67726 0.22933
    $ S_n^B $ 0.95374 0.62278 0.89066 0.35399 0.63045 0.50848 0.24818
    $ S_n^C $ 0.77218 0.85234 0.55082 0.59148 0.66317 0.19497 0.75289
    $ 02_D $ $ S_n^A $ 0.9395 0.78964 0.16184 0.53982 0.29484 0.66331 0.20619
    $ S_n^B $ 0.88266 0.66224 0.85737 0.35005 0.10124 0.46223 0.38249
    $ S_n^C $ 0.78311 0.77796 0.54221 0.45008 0.63658 0.18085 0.74966
    $ 02_E $ $ S_n^A $ 0.70129 0.69321 0.67504 0.60476 0.16392 0.58817 0.40335
    $ S_n^B $ 0.74008 0.6715 0.58318 0.0049623 0.0051137 0.10121 0.0020536
    $ S_n^C $ 0.84037 0.63107 0.49829 0.13559 0.3429 0.2353 0.59488
    $ 02_F $ $ S_n^A $ 0.67071 0.69062 0.00022063 0.70433 0.21532 0.59601 0.40447
    $ S_n^B $ 0.75342 0.79923 0.6854 0.0047347 0.0051137 0.24267 0.12096
    $ S_n^C $ 0.85153 0.64599 0.4965 0.17775 0.59038 0.22363 0.6039
    $ 02_G $ $ S_n^A $ 0.96012 0.83245 0.18944 0.67692 0.46376 0.68013 0.29482
    $ S_n^B $ 0.928 0.88034 0.90873 0.51759 0.2772 0.49687 0.59512
    $ S_n^C $ 0.43078 0.86668 0.7769 0.43049 0.73585 0.29868 0.80019
    $ 02_H $ $ S_n^A $ 0.95063 0.723 0.20296 0.58708 0.45519 0.60342 0.23514
    $ S_n^B $ 0.76766 0.87723 0.88354 0.42999 0.28303 0.45394 0.53747
    $ S_n^C $ 0.3791 0.77866 0.67881 0.4439 0.6831 0.38215 0.77077
    $ 02_I $ $ S_n^A $ 0.74082 0.70654 0.63096 0.67211 0.37867 0.40685 0.46816
    $ S_n^B $ 0.78706 0.74854 0.77409 0.40437 0.0051149 0.41118 0.15005
    $ S_n^C $ 0.8313 0.70894 0.57827 0.29434 0.45781 0.18463 0.64957
    $ 03 $ $ S_n^A $ 0.31726 0.71536 0.039398 0.0275 0.04735 0.55186 -0.016521
    $ S_n^B $ 0.74241 0.078789 0.74837 0.093607 0.072756 0.063483 0.016966
    $ S_n^C $ 0.1979 0.63888 0.50679 0.38619 0.63042 0.15272 0.040005
    $ 04 $ $ S_n^A $ 0.93263 0.91325 0.42413 0.76044 0.14708 0.65121 0.20317
    $ S_n^B $ 0.80267 0.75273 0.82493 0.34089 0.59773 0.053328 0.17242
    $ S_n^C $ 0.83335 0.83655 0.52072 0.65756 0.60804 -0.011826 0.75069
    $ 05_A $ $ S_n^A $ 0.62816 0.54254 0.53309 0.33792 0.056015 0.56261 0.26702
    $ S_n^B $ 0.62809 0.53061 0.63073 0.10184 0.53474 0.13624 0.091781
    $ S_n^C $ 0.57522 0.56074 0.50374 0.2563 0.03376 0.20809 0.52682
    $ 05_B $ $ S_n^A $ 0.82986 0.92322 0.034751 0.45707 0.32957 0.23335 0.016423
    $ S_n^B $ 0.85027 0.32074 0.80436 0.38807 0.076231 0.039543 0.099949
    $ S_n^C $ 0.84768 0.90828 0.62383 0.26928 0.37191 -0.011823 0.68647
    $ 05_C $ $ S_n^A $ 0.94287 0.26324 0.64302 0.52486 0.27899 0.24078 0.18025
    $ S_n^B $ 0.89078 0.62664 0.40502 0.22462 0.57887 0.22329 0.2018
    $ S_n^C $ 0.28965 0.75373 0.52108 0.52755 0.16606 0.11553 0.70783
    $ 06_A $ $ S_n^A $ 0.92474 0.92357 0.55259 0.78262 0.41037 0.76931 0.38347
    $ S_n^B $ 0.96431 0.8366 0.86621 0.64495 0.8653 0.64495 0.22513
    $ S_n^C $ 0.83624 0.88801 0.85767 0.43116 0.78104 0.56085 0.81422
    $ 06_B $ $ S_n^A $ 0.98701 0.92507 0.7828 0.70106 0.5266 0.63942 0.49924
    $ S_n^B $ 0.96612 0.85026 0.94716 0.66409 0.88019 0.69662 0.33437
    $ S_n^C $ 0.89048 0.91984 0.89483 0.57398 0.80711 0.67289 0.86934
    $ 06_C $ $ S_n^A $ 0.98627 0.92142 0.74469 0.7508 0.43544 0.78684 0.5849
    $ S_n^B $ 0.96342 0.79049 0.92438 0.67478 0.81362 0.47867 0.32063
    $ S_n^C $ 0.83909 0.9238 0.87488 0.45797 0.83364 0.57153 0.8739
    $ 07_A $ $ S_n^A $ 0.95804 0.7628 0.12818 0.32632 0.23696 0.090063 0.11749
    $ S_n^B $ 0.94151 0.10898 0.37218 0.24965 0.14233 0.25999 0.21642
    $ S_n^C $ 0.32321 0.66734 0.51948 0.21429 0.53912 0.14121 0.22274
    $ 07_B $ $ S_n^A $ 0.96217 0.9236 0.25007 0.5347 0.24355 0.20699 0.34255
    $ S_n^B $ 0.98301 0.79505 0.25037 0.43474 0.15299 0.32765 0.26197
    $ S_n^C $ 0.83442 0.9243 0.72187 0.2231 0.79925 0.24585 0.25705
    $ 07_C $ $ S_n^A $ 0.98101 0.83101 0.24815 0.5074 0.17852 0.28831 0.33178
    $ S_n^B $ 0.9162 0.76933 0.2601 0.52666 0.16415 0.38689 0.26087
    $ S_n^C $ 0.34009 0.84241 0.67362 0.31698 0.40674 0.23883 0.28641
     | Show Table
    DownLoad: CSV

    Table 4.  The scores obtained by each solution for each difficulty level, and the leaderboard positions of the teams. We note that the drop-out feature explained in the scoring rules of the challenge affected the leaderboard positions, such that the positions are not completely ordered according to the Total Scores only

    Team Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Total score Position
    $ 01_A $ 2.7332 2.49 2.096 1.7906 1.1008 1.5369 1.2217 12.9692 2nd
    $ 01_B $ 2.6958 2.2986 1.7392 1.337 0.89113 1.5005 1.2739 11.7361   
    $ 02_A $ 2.6391 2.062 1.5481 1.5187 1.1712 1.4864 1.0544 11.4798   
    $ 02_B $ 2.7752 2.5928 1.6347 1.6826 0.68885 1.5384 0.89256 11.8051   
    $ 02_C $ 2.6735 2.3062 1.539 1.5906 1.634 1.3807 1.2304 12.3545   
    $ 02_D $ 2.6053 2.2298 1.5614 1.34 1.0327 1.3064 1.3383 11.4139   
    $ 02_E $ 2.2817 1.9958 1.7565 0.74531 0.51193 0.92468 1.0003 9.2162   
    $ 02_F $ 2.2757 2.1358 1.1821 0.88682 0.81082 1.0623 1.1293 9.4829   
    $ 02_G $ 2.3189 2.5795 1.8751 1.625 1.4768 1.4757 1.6901 13.0411 2nd
    $ 02_H $ 2.0974 2.3789 1.7653 1.461 1.4213 1.4395 1.5434 12.1068   
    $ 02_I $ 2.3592 2.164 1.9833 1.3708 0.8416 1.0027 1.2678 10.9894   
    $ 03_A $ 1.2576 1.433 1.2946 0.5073 0.75052 0.76806 0.04045 6.0515 6th
    $ 04 $ 2.5686 2.5025 1.7698 1.7589 1.3528 0.69271 1.1263 11.7717 3rd
    $ 05_A $ 1.8315 1.6339 1.6676 0.69606 0.62452 0.90694 0.88562 8.2461   
    $ 05_B $ 2.5278 2.1522 1.4629 1.1144 0.77772 0.26107 0.80284 9.099   
    $ 05_C $ 2.1233 1.6436 1.5691 1.277 1.0239 0.5796 1.0899 9.3065 4th
    $ 06_A $ 2.7253 2.6482 2.2765 1.8587 2.0567 1.9751 1.4228 14.9633   
    $ 06_B $ 2.8436 2.6952 2.6248 1.9391 2.2139 2.0089 1.703 16.0285 1st
    $ 06_C $ 2.7888 2.6357 2.5439 1.8836 2.0827 1.837 1.7794 15.5512   
    $ 07_A $ 2.2228 1.5391 1.0198 0.79026 0.9184 0.49126 0.55665 7.5383   
    $ 07_B $ 2.7796 2.643 1.2223 1.1925 1.1958 0.78049 0.86157 10.6753 5th
    $ 07_C $ 2.2373 2.4427 1.1819 1.351 0.74942 0.91403 0.87905 9.7555   
     | Show Table
    DownLoad: CSV
  • [1] A. Alghamdi, M. Carøe, J. Everink, J. Jørgensen, K. Knudsen, J. Nielsen, A. Rasmussen, R. Sørensen and C. Zhang, Spatial regularization and level-set methods for experimental electrical impedance tomography with partial data, Applied Mathematics for Modern Challenges.
    [2] D. C. Barber and B. H. Brown, Errors in reconstruction of resistivity images using a linear reconstruction technique, Clinical Physics and Physiological Measurement, 9 (1988), 101-104.  doi: 10.1088/0143-0815/9/4A/017.
    [3] R. Beraldo, L. Ferreira, F. de Moura, A. Takahata and R. Suyama, Post-processing electrical impedance tomography reconstructions with incomplete data using convolutional neural networks, Applied Mathematics for Modern Challenges, 2024. doi: 10.3934/ammc.2024008.
    [4] K. S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924.  doi: 10.1109/10.35300.
    [5] Code for KTC2023 EIT challenge (end-to-end + PnP), 2023. Available from: https://github.com/msantacesaria/KTC2023_PNPE2E.
    [6] Code for KTC2023 EIT challenge (end-to-end), 2023. Available from: https://github.com/lucala00/KTC2023_E2E.
    [7] Code for KTC2023 EIT challenge (Plug & Play + mask), 2023. Available from: https://github.com/lucala00/KTC2023_PNPmasked.
    [8] Deep image prior with total variation regularization to reconstruct Electrical Impedance Tomography images from limited data, 2023. Available from: https://github.com/robert-abc/KTC2023-ABC2.
    [9] F. de MouraS. Siltanen and M. Juvonen, Helsinki Deblur Challenge 2021 (HDC20201) IPI Special Issue preface, Inverse Problems and Imaging, 17 (2023), i-iii.  doi: 10.3934/ipi.2023028.
    [10] A. Denker, Z. Keretam I. Singh, T. Freudenberg, T. Kluth, P. Maass and S. Arridge, Data-driven approaches for electrical impedance tomography image segmentation from partial boundary data, Applied Mathematics for Modern Challenges, 2024. doi: 10.3934/ammc.2024005.
    [11] EIT, 2023. Available from: https://gitlab.com/brandtannachristina/eit.
    [12] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI1.
    [13] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI2.
    [14] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI3.
    [15] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI4.
    [16] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI5.
    [17] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI6.
    [18] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI7.
    [19] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI8.
    [20] EIT Image Reconstruction Algorithm, 2023. Available from: https://github.com/CUQI-DTU/KTC2023-CUQI9.
    [21] Eit MultibangSegmentation, 2023. Available from: https://gitlab.com/brandtannachristina/eit_multibangSegmentation.
    [22] EIT_Challenge_2023, 2023. Available from: https://github.com/MonicaPragliola/EIT_Challenge_2023.
    [23] EIT_multibangTV_Segmentation, 2023. Available from: https://gitlab.com/brandtannachristina/eit_multibangtv_segmentation.
    [24] A. Hauptmann, V. Kolehmainen, M. Mach, T. Savolainen, A. Seppänen, and S. Siltanen, Open 2D electrical impedance tomography data archive, preprint, 2017, arXiv: 1704.01178.
    [25] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci., 160, Springer-Verlag, New York, 2005. doi: 10.1007/b138659.
    [26] J. KourunenT. SavolainenA. LehikoinenM. Vauhkonen and L. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2009), 015503.  doi: 10.1088/0957-0233/20/1/015503.
    [27] Kuopio Tomography Challenge 2023 open electrical impedance tomographic dataset, 2024. Available from: https://zenodo.org/records/10986692.
    [28] A. LipponenA. Seppänen and J. Kaipio, Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition, Journal of Electronic Imaging, 22 (2013), 023008.  doi: 10.1117/1.JEI.22.2.023008.
    [29] A. MeaneyF. de MouraM. Juvonen and S. Siltanen, Helsinki tomography challenge 2022: Description of the competition and dataset, Applied Mathematics for Modern Challenges, 1 (2023), 170-201.  doi: 10.3934/ammc.2023010.
    [30] Ohm-azing Shock Troopers Kuopio Tomography Challenge, 2023. Available from: https://github.com/nlinthacum/Ohm-azing-Shock-Troopers-Kuopio-Tomography-Challenge.
    [31] N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9 (1979), 62-66.  doi: 10.1109/TSMC.1979.4310076.
    [32] Post-processing electrical impedance tomography reconstructions with incomplete data using convolutional neural networks (Source code), 2023. Available from: https://github.com/robert-abc/KTC2023-ABC1.
    [33] V. Pratt, Direct least-squares fitting of algebraic surfaces, Computer Graphics, 21 (1987), 145-152.  doi: 10.1145/37402.37420.
    [34] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [35] Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_fcunet.
    [36] Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_postprocessing.
    [37] Submission to the KTC 2023, 2023. Available from: https://github.com/alexdenker/ktc2023_conditional_diffusion.
    [38] P. J. VauhkonenM. VauhkonenT. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160.  doi: 10.1109/10.784147.
    [39] Z. WangA. BovikH. Sheikh and E. Simoncelli, Image quality assessment: From error measurement to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.
  • 加载中

Figures(13)

Tables(4)

SHARE

Article Metrics

HTML views(699) PDF downloads(151) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return