[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Computing discrete logarithms in cryptographically-interesting characteristic-three finite fields

Abstract / Introduction Full Text(HTML) Figure(0) / Table(8) Related Papers Cited by
  • Since 2013 there have been several developments in algorithms for computing discrete logarithms in small-characteristic finite fields, culminating in a quasi-polynomial algorithm. In this paper, we report on our successful computation of discrete logarithms in the cryptographically-interesting characteristic-three finite field $\mathbb{F}_{3^{6.509}}$    using these new algorithms; prior to 2013, it was believed that this field enjoyed a security level of 128 bits. We also show that a recent idea of Guillevic can be used to compute discrete logarithms in the cryptographically-interesting finite field $\mathbb{F}_{3^{6.709}}$    using essentially the same resources as we expended on the $\mathbb{F}_{3^{6.509}}$    computation. Finally, we argue that discrete logarithms in the finite field $\mathbb{F}_{3^{6.1429}}$    can feasibly be computed today; this is significant because this cryptographically-interesting field was previously believed to enjoy a security level of 192 bits.

    Mathematics Subject Classification: Primary: 94A60; Secondary: 11Y16.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  CPU times of each stage of the computation of discrete logarithms in $\mathbb{F}_{3^{6 \cdot 509}}$

    Computation stage CPU time (years) CPU frequency (GHz)
    Finding logarithms of quadratic polynomials
    Relation generation $0.0003$ 3.20
    Linear algebra $0.49$ 2.40
    Finding logarithms of cubics
    Relation generation $0.14$ 3.20
    Linear algebra $43.28$ 2.60
    Finding logarithms of quartics (29 families)
    Relation generation $4.01$ 2.60
    Linear algebra $94.70$ 2.60
    Descent
    Continued-fractions (508 to 40) $51.00$ 2.87
    Classical (40 to 21) $9.85$ 2.66
    Classical (21 to 15) $10.10$ 2.66
    Small degree (15 to 4) $6.18$ 3.00
    Total CPU time (years) $219.75$
     | Show Table
    DownLoad: CSV

    Table 4.  Number of polynomials of each degree in the interval $[5, 15]$ obtained after the continued-fractions and classical descents. The total number of polynomials is 1409

    Degree 5 6 7 8 9 10 11 12 13 14 15
    Number of polynomials 101 107 94 98 92 116 137 123 155 173 213
     | Show Table
    DownLoad: CSV

    Table 2.  Expected number of irreducible quartics resulting from all the Gröbner bases and zigzag descent steps for each degree in $[5, 15]$

    Degree 5 6 7 8 9 10 11 12 13 14 15
    Number of degree-4 polynomials $2^{14.18}$ $2^{14.26}$ $2^{21.27}$ $2^{16.13}$ $2^{22.11}$ $2^{23.88}$ $2^{28.54}$ $2^{23.97}$ $2^{28.74}$ $2^{24.88}$ $2^{30.45}$
     | Show Table
    DownLoad: CSV

    Table 3.  For every family from $\mathcal{B}_3$, $\mathcal{B}_{4, u^i}$, $i \in [0, 28]$, the inverse of the probability for a random irreducible quartic to descend based on that family

    $\mathcal{B}_3\;\;2^{0.829}$ $\mathcal{B}_{4, u^0}\;\;2^{2.102}$ $\mathcal{B}_{4, u^1}\;\;2^{3.374}$ $\mathcal{B}_{4, u^2}\;\;2^{4.646}$ $\mathcal{B}_{4, u^3}\;\;2^{5.918}$
    $\mathcal{B}_{4, u^4}\;\;2^{7.191}$ $\mathcal{B}_{4, u^5}\;\;2^{8.463}$ $\mathcal{B}_{4, u^6}\;\;2^{9.735}$ $\mathcal{B}_{4, u^7}\;\;2^{11.008}$ $\mathcal{B}_{4, u^8}\;\;2^{12.280}$
    $\mathcal{B}_{4, u^9}\;\;2^{13.552}$ $\mathcal{B}_{4, u^{10}}\;\;2^{14.825}$ $\mathcal{B}_{4, u^{11}}\;\;2^{16.097}$ $\mathcal{B}_{4, u^{12}}\;\;2^{17.369}$ $\mathcal{B}_{4, u^{13}}\;\;2^{18.641}$
    $\mathcal{B}_{4, u^{14}}\;\;2^{19.914}$ $\mathcal{B}_{4, u^{15}}\;\;2^{21.186}$ $\mathcal{B}_{4, u^{16}}\;\;2^{22.458}$ $\mathcal{B}_{4, u^{17}}\;\;2^{23.731}$ $\mathcal{B}_{4, u^{18}}\;\;2^{25.003}$
    $\mathcal{B}_{4, u^{19}}\;\;2^{26.275}$ $\mathcal{B}_{4, u^{20}}\;\;2^{27.547}$ $\mathcal{B}_{4, u^{21}}\;\;2^{28.820}$ $\mathcal{B}_{4, u^{22}}\;\;2^{30.092}$ $\mathcal{B}_{4, u^{23}}\;\;2^{31.364}$
    $\mathcal{B}_{4, u^{24}}\;\;2^{32.637}$ $\mathcal{B}_{4, u^{25}}\;\;2^{33.909}$ $\mathcal{B}_{4, u^{26}}\;\;2^{35.181}$ $\mathcal{B}_{4, u^{27}}\;\;2^{36.454}$ $\mathcal{B}_{4, u^{28}}\;\;2^{37.726}$
     | Show Table
    DownLoad: CSV

    Table 5.  Total and average CPU times in seconds to obtain the logarithms of all the polynomials of degrees in $[5, 15]$ that resulted from the continued-fractions and classical descents. The times assume that an Intel Xeon E5-2658 v2 2.40 GHz machine with 256 gigabytes of RAM is used

    Degree 5 6 7 8 9 10 11 12 13 14 15
    Total $2^{10.21}$ $2^{10.29}$ $2^{17.30}$ $2^{12.16}$ $2^{18.14}$ $2^{19.92}$ $2^{24.57}$ $2^{20.00}$ $2^{24.78}$ $2^{20.91}$ $2^{26.48}$
    Average $2^{3.55}$ $2^{3.55}$ $2^{10.69}$ $2^{5.64}$ $2^{11.62}$ $2^{13.06}$ $2^{17.47}$ $2^{13.06}$ $2^{17.50}$ $2^{13.48}$ $2^{18.75}$
     | Show Table
    DownLoad: CSV

    Table 6.  Estimated costs of the main steps for computing discrete logarithms in $\mathbb{F}_{3^{6.1429}}$

    Finding logarithms of polynomials of degree $\leq 4$
    Degrees 1 and 2 $2^{50.7} M_q$
    Degree 3 $2^{56.9} M_q$
    Degree 4 (36 families) $2^{56.3} M_q$
    Descent
    Guillevic (1428 to 71) $2^{62.4} M_q$
    Classical (71 to 32) $2^{61.8} M_q$
    Classical (31 to $\{1, \ldots, 16, 18, 20, 22, 24, 28, 32\}$) $2^{59.2}M_q$
    Small degree ($\{5, \ldots, 16, 18, 20, 22, 24, 28, 32\}$ to 4) $2^{60.0}M_q$
    Total cost $2^{63.4} M_q$
     | Show Table
    DownLoad: CSV

    Table 7.  $M_q$ costs of performing all the $D$-to-4 descents for each $D \in S$

    $D$ 5 6 7 8 9 10 11 12 13
    $e_D$ 73 68 65 63 63 63 64 65 67
    $\log_2(\mbox{cost})$ 36.7 36.6 43.7 38.6 44.6 46.0 50.5 46.1 50.6
    $D$ 14 15 16 18 20 22 24 28 32
    $e_D$ 69 72 75 83 92 103 117 151 200
    $\log_2(\mbox{cost})$ 46.6 51.9 48.4 54.5 56.1 56.4 56.4 57.2 59.3
     | Show Table
    DownLoad: CSV

    Table 8.  Estimated calendar time for computing a discrete logarithm in $\mathbb{F}_{3^{6.1429}}$ using machines ${\mathcal{A}}$ and ${\mathcal{B}}$

    Computation # cores # days
    Degree-3 logarithms 5824 2
    Degree-4 logarithms 9000 1
    Guillevic descent 9000 59
    First classical descent 9000 39
    Second classical descent 9000 7
    Small degree descent 1500 65
    Total time 173
     | Show Table
    DownLoad: CSV
  •   ABACUS Supercomputer - Cinvestav, http://www.abacus.cinvestav.mx/.
      G. Adj, Logaritmo discreto en campos finitos de característica pequeña: atacando la criptografía basada en emparejamientos de Tipo 1, Ph.D. thesis, CINVESTAV-IPN, 2016. Available at http://www.cs.cinvestav.mx/TesisGraduados/2016/TesisGoraAdj.pdf.
      G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, Weakness of $\mathbb{F}_{3^{6 · 509}}$    for discrete logarithm cryptography, in: Pairing-Based Cryptography - Pairing 2013, LNCS, 8365 (2014), 20-44. doi: 10.1007/978-3-319-04873-4_2.
      G. Adj , A. Menezes , T. Oliveira  and  F. Rodríguez-Henríquez , Weakness of $\mathbb{F}_{3^{6 · 1429}}$    and $\mathbb{F}_{2^{4 · 3041}}$    for discrete logarithm cryptography, Finite Fields and Their Applications, 32 (2015) , 148-170.  doi: 10.1016/j.ffa.2014.10.009.
      G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, Computing discrete logarithms in $\mathbb{F}_{3^{6 · 137}}$    and $\mathbb{F}_{3^{6 · 163}}$    using Magma, in: WAIFI 2014, LNCS, 9061 (2015), 3-22. doi: 10.1007/978-3-319-16277-5_1.
      R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic: Improvements over FFS in small to medium characteristic, in: Advances in Cryptology - EUROCRYPT 2014, LNCS, 8441 (2014), 1-16. doi: 10.1007/978-3-642-55220-5_1.
      P. Barreto , S. Galbraith , C. ÓhÉigeartaigh  and  M. Scott , Efficient pairing computation on supersingular abelian varieties, Designs, Codes and Cryptography, 42 (2007) , 239-271.  doi: 10.1007/s10623-006-9033-6.
      P. Barreto, H. Kim, B. Lynn and M. Scott, Efficient algorithms for pairing-based cryptosystems, in: Advances in Cryptology - CRYPTO 2002, LNCS, 2442 (2002), 354-368. doi: 10.1007/3-540-45708-9_23.
      I. Blake , R. Fuji-Hara , R. Mullin  and  S. Vanstone , Computing logarithms in finite fields of characteristic two, SIAM Journal on Algebraic and Discrete Methods, 5 (1984) , 276-285.  doi: 10.1137/0605029.
      D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, in: Advances in Cryptology - CRYPTO 2001, LNCS, 2139 (2001), 213-229. doi: 10.1007/3-540-44647-8_13.
      D. Boneh , B. Lynn  and  H. Shacham , Short signatures from the Weil pairing, Journal of Cryptology, 17 (2004) , 297-319.  doi: 10.1007/s00145-004-0314-9.
      I. Canales-Martínez, Implementación eficiente de prueba de suavidad para polinomios, Tesis de Maestría, CINVESTAV-IPN, 2015. Available at http://delta.cs.cinvestav.mx/~francisco/Thesis_IAC.pdf.
      D. Coppersmith , Fast evaluation of logarithms in fields of characteristic two, IEEE Transactions on Information Theory, 30 (1984) , 587-594.  doi: 10.1109/TIT.1984.1056941.
      The Cunningham Project, http://homes.cerias.purdue.edu/~ssw/cun/.
      J. Faugère , A new efficient algorithm for computing Gröbner bases ($F_4$), Journal of Pure and Applied Algebra, 139 (1999) , 61-88.  doi: 10.1016/S0022-4049(99)00005-5.
      G. Frey  and  H. Rück , A remark concerning $m$-divisibility and the discrete logarithm in the divisor class group of curves, Mathematics of Computation, 62 (1994) , 865-874.  doi: 10.2307/2153546.
      S. Galbraith, Supersingular curves in cryptography, in: Advances in Cryptology - ASIACRYPT 2001, LNCS 2248 (2001), 495-513. doi: 10.1007/3-540-45682-1_29.
      S. Galbraith, K. Harrison and D. Soldera, Implementing the Tate pairing, in: Algorithmic Number Theory - ANTS 2002, LNCS, 2369 (2002), 324-337. doi: 10.1007/3-540-45455-1_26.
      F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in $\mathbb{F}_{2^{1971}}$ , in: Advances in Cryptology - CRYPTO 2013, LNCS, 8043 (2013), 109-128. doi: 10.1007/978-3-642-40084-1_7.
      F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, Solving a 6120-bit DLP on a desktop computer, in: Selected Areas in Cryptography - SAC 2014, LNC, S 8282 (2014), 136-152.
      D. Gordon , Discrete logarithms in $GF(p)$ using the number field sieve, SIAM Journal on Discrete Mathematics, 6 (1993) , 124-138.  doi: 10.1137/0406010.
      R. Granger, T. Kleinjung and J. Zumbrägel, Breaking `128-bit secure' supersingular binary curves (or how to solve discrete logarithms in $\mathbb{F}_{2^{4 · 1223}}$    and $\mathbb{F}_{2^{12 · 367}}$) , in: Advances in Cryptology - CRYPTO 2014, Part II, LNCS, 8617 (2014), 126-145. doi: 10.1007/978-3-662-44381-1_8.
      R. Granger, T. Kleinjung and J. Zumbrägel, Breaking '128-bit secure' supersingular binary curves (or how to solve discrete logarithms in $\mathbb{F}_{2^{4 · 1223}}$    and $\mathbb{F}_{2^{12 · 367}}$) , Cryptology ePrint Archive: Report 2014/119, http://eprint.iacr.org/2014/119.
      R. Granger , T. Kleinjung  and  J. Zumbrägel , On the discrete logarithm problem in finite fields of fixed characteristic, Transactions of the AMS, 370 (2018) , 3129-3145.  doi: 10.1090/tran/7027.
      A. Guillevic, Faster individual discrete logarithms with the QPA and NFS variants, Cryptology ePrint Archive: Report 2016/684, https://eprint.iacr.org/2016/684.
      A. Joux, A new index calculus algorithm with complexity $L(1/4 + o(1))$ in very small characteristic, in: Selected Areas in Cryptography - SAC 2013, LNCS, 8282 (2014), 355-379. doi: 10.1007/978-3-662-43414-7_18.
      A. Joux and R. Lercier, The function field sieve in the medium prime case, in: Advances in Cryptology - EUROCRYPT 2006, LNCS, 4004 (2006), 254-270. doi: 10.1007/11761679_16.
      A. Joux and C. Pierrot, Improving the polynomial time precomputation of Frobenius representation discrete logarithm algorithms, in: Advances in Cryptology - ASIACRYPT 2014, LNCS, 8873 (2014), 378-397. doi: 10.1007/978-3-662-45611-8_20.
      A. Joux  and  C. Pierrot , Technical history of discrete logarithms in small characteristic finite fields, Designs, Codes and Cryptography, 78 (2016) , 73-85.  doi: 10.1007/s10623-015-0147-6.
      A. Knopfmacher  and  J. Knopfmacher , Counting irreducible factors of polynomials over a finite fields, Discrete Mathematics, 112 (1993) , 103-118.  doi: 10.1016/0012-365X(93)90227-K.
      A. Lenstra, Unbelievable security: Matching AES security using public key systems, in: Advances in Cryptology - ASIACRYPT 2001, LNCS, 2248 (2001), 67-86. doi: 10.1007/3-540-45682-1_5.
      Magma v2.19-7, http://magma.maths.usyd.edu.au/magma/.
      Maple 2016, http://www.maplesoft.com/products/maple/.
      A. Menezes , T. Okamoto  and  S. Vanstone , Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory, 39 (1993) , 1639-1646.  doi: 10.1109/18.259647.
      O. Schirokauer , Discrete logarithms and local units, Philosophical Transactions of the Royal Society London A, 345 (1993) , 409-423.  doi: 10.1098/rsta.1993.0139.
      D. Wiedemann , Solving sparse linear equations over finite fields, IEEE Transactions on Information Theory, 32 (1986) , 54-62.  doi: 10.1109/TIT.1986.1057137.
  • 加载中

Tables(8)

SHARE

Article Metrics

HTML views(3200) PDF downloads(529) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return