[1]
|
T. Abualrub, N. Aydin and P. Seneviratne, On Θ-cyclic codes over $\mathbb{F}_2 + v\mathbb{F}_2$, Austral. J. Combin., 54 (2012), 115-126.
|
[2]
|
T. Abualrub, A. Ghrayeb and X. N. Zeng, Construction of cyclic codes over $\mathbb F_4$ for DNA computing, J. Franklin Ins., 343 (2006), 488-457.
doi: 10.1016/j.jfranklin.2006.02.009.
|
[3]
|
L. Adleman, Molecular computation of the solutions to combinatorial problems, Science, 266 (1994), 1021-1024.
doi: 10.1126/science.7973651.
|
[4]
|
C. Alf-Steinberger, The genetic code and error transmission, Proc. Natl. Acad. Sci. USA, 64 (1969), 584-591.
doi: 10.1073/pnas.64.2.584.
|
[5]
|
M. B. Bechet, Bias de codons et Régulation de la Traduction chez les Bactéries et le Phages, Ph. D thesis, Univ. Paris 7,2007.
|
[6]
|
H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inf. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789.
|
[7]
|
S. T. Dougherty, J. Lark Kim and H. Kulosman, MDS code over finit principal ideal rings, Des. Codes Cryptogr., 50 (2009), 77-92.
doi: 10.1007/s10623-008-9215-5.
|
[8]
|
K. Guenda and T. A. Gulliver, Construction of cyclic codes over $\mathbb F_2+u\mathbb F_2$ for DNA computing, Appl. Algebra Eng. Commun. Comput, 24 (2013), 445-459.
doi: 10.1007/s00200-013-0188-x.
|
[9]
|
K. Guenda and T. A. Gulliver, Repeated root constacyclic codes of length mps over $mp^s$ over $\mathbb F_p^r+u\mathbb F_p^r+\cdot\cdot\cdot+u^{e-1}\mathbb F_p^r$, J. Alg. App. , to appear.
doi: 10.1142/S0219498814500819.
|
[10]
|
K. Guenda, T. A. Gulliver and P. Solé, On cyclic DNA codes, in Proc. IEEE Int. Symp. Inform. Theory, Istanbul, 2013,121-125.
doi: 10.1109/ISIT.2013.6620200.
|
[11]
|
A. K. Konopka, Theory of the degenerate coding and information parameters of the protein coding genes, Biochimie, 67 (1985), 455-468.
|
[12]
|
M. Mansuripur, P. K. Khulbe, S. M. Kuebler, J. W. Perry, M. S. Giridhar and N. Peyghambarian, Information Storage and Retrieval Using Macromolecules as Storage Media, Univ. Arizona Technical Report, 2003.
|
[13]
|
J. L. Massey, Reversible codes, Inf. Control, 7 (1964), 369-380.
doi: 10.1016/S0019-9958(64)90438-3.
|
[14]
|
O. Milenkovic and N. Kashyap, On the design of codes for DNA computing, in IEEE Int. Symp. Inf. Theory (ISIT), 2006.
doi: 10.1007/11779360_9.
|
[15]
|
G. H. Norton and A. Salagean, On the structure of linear and cyclic codes over finite chain ring, AAECC, 10 (2000), 489-506.
doi: 10.1007/PL00012382.
|
[16]
|
E. S. Ristad and P. N. Yianilos, Learning string-edit distance, IEEE Trans. Anal. Mach. Intell, 20 (1998), 522-532.
doi: 10.1109/34.682181.
|
[17]
|
V. Rykov, A. J. Macula, D. Torny and P. White, DNA sequences and quaternary cyclic codes, in IEEE Int. Symp. Inf. Theory (ISIT), 2001.
doi: 10.1109/ISIT.2001.936111.
|
[18]
|
R. Sanchez, E. Morgado and R. Grau, Gene algebra from a genetic code algebraic structure, J. Math. Biol., 51 (2005), 431-475.
doi: 10.1007/s00285-005-0332-8.
|
[19]
|
I. Siap, T. Abualrub and A. Ghrayeb, Cyclic DNA codes over ring $\mathbb{F}_2[u]/(u^2-1)$ based on the deletion distance, Franklin Institute, 36 (2009), 731-740.
doi: 10.1016/j.jfranklin.2009.07.002.
|
[20]
|
http://www.codetables.de
|