[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Decoding of $2$D convolutional codes over an erasure channel

Abstract / Introduction Related Papers Cited by
  • In this paper we address the problem of decoding $2$D convolutional codes over an erasure channel. To this end we introduce the notion of neighbors around a set of erasures which can be considered an analogue of the notion of sliding window in the context of $1$D convolutional codes. The main idea is to reduce the decoding problem of $2$D convolutional codes to a problem of decoding a set of associated $1$D convolutional codes. We first show how to recover sets of erasures that are distributed on vertical, horizontal and diagonal lines. Finally we outline some ideas to treat any set of erasures distributed randomly on the $2$D plane.
    Mathematics Subject Classification: Primary: 94B10; Secondary: 94B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Almeida, D. Napp and R. Pinto, A new class of superregular matrices and MDP convolutional codes, Linear Algebra Appl., 439 (2013), 2145-2157.doi: 10.1016/j.laa.2013.06.013.

    [2]

    M. Arai, A. Yamamoto, A. Yamaguchi, S. Fukumoto and K. Iwasaki, Analysis of using convolutional codes to recover packet losses over burst erasure channels, in Proc. 2001 Pacific Rim Int. Symp. Depend. Comp., IEEE, Seoul, 2001, 258-265.doi: 10.1109/PRDC.2001.992706.

    [3]

    J. J. Climent, D. Napp, C. Perea and R. Pinto, A construction of MDS 2D convolutional codes of rate 1/n based on superregular matrices, Linear Algebra Appl., 437 (2012), 766-780.doi: 10.1016/j.laa.2012.02.032.

    [4]

    E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes, IEEE Trans. Inf. Theory, 40 (1994), 1068-1082.doi: 10.1109/18.335967.

    [5]

    E. Fornasini and M. E. Valcher, On 2D finite support convolutional codes: an algebraic approach, Multidim. Syst. Signal Proc., 5 (1994), 231-243.doi: 10.1007/BF00980707.

    [6]

    E. Fornasini and M. E. Valcher, nD polynomial matrices with applications to multidimensional signal analysis, Multidim. Syst. Signal Proc., 8 (1997), 387-407.doi: 10.1023/A:1008256224288.

    [7]

    H. Gluesing-Luerssen, J. Rosenthal and R. Smarandache, Strongly MDS convolutional codes, IEEE Trans. Inf. Theory, 52 (2006), 584-598.doi: 10.1109/TIT.2005.862100.

    [8]

    H. Gluesing-Luerssen, J. Rosenthal and P. Weiner, Duality between multidimensional convolutional codes and systems, in Advances in Mathematical Systems Theory (eds. F. Colonius, U. Helmke, F. Wirth and D. Praetzel-Wolters), Birkhauser, 2000, 135-150.doi: 10.1007/978-1-4612-0179-3_8.

    [9]

    R. Hutchinson, The existence of strongly MDS convolutional codes, SIAM J. Control Opt., 47 (2008), 2812-2826.doi: 10.1137/050638977.

    [10]

    R. Hutchinson, J. Rosenthal and R. Smarandache, Convolutional codes with maximum distance profile, Syst. Control Lett., 54 (2005), 53-63.doi: 10.1016/j.sysconle.2004.06.005.

    [11]

    R. Hutchinson, R. Smarandache and J. Trumpf, On superregular matrices and MDP convolutional codes, Linear Algebra Appl., 428 (2008), 2585-2596.doi: 10.1016/j.laa.2008.02.011.

    [12]

    P. Jangisarakul and C. Charoenlarpnopparut, Algebraic decoder of multidimensional convolutional code: Constructive algorithms for determining syndrome decoder and decoder matrix based on Gröbner basis, Multidim. Syst. Signal Proc., 22 (2011), 67-81.doi: 10.1007/s11045-010-0139-7.

    [13]

    D. Napp, C. Perea and R. Pinto, Input-state-output representations and constructions of finite support 2D convolutional codes, Adv. Math. Commun., 4 (2010), 533-545.doi: 10.3934/amc.2010.4.533.

    [14]

    V. Tomás, Complete-MDP Convolutional Codes over the Erasure Channel, Ph.D thesis, Univ. Alicante, Alicante, Spain, 2010.

    [15]

    V. Tomás, J. Rosenthal and R. Smarandache, Reverse-maximum distance profile convolutional codes over the erasure channel, in Proc.19th Int. Symp. Math. Theory Netw. Syst. (ed. A. Edelmayer), 2010, 2121-2127.doi: 10.5167/uzh-44714.

    [16]

    V. Tomás, J. Rosenthal and R. Smarandache, Decoding of convolutional codes over the erasure channel, IEEE Trans. Inf. Theory, 58 (2012), 90-108.doi: 10.1109/TIT.2011.2171530.

    [17]

    P. A. Weiner, Multidimensional Convolutional Codes, Ph.D thesis, Univ. Notre Dame, Indiana, USA, 1998.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(138) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return