[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A reduction point algorithm for cocompact Fuchsian groups and applications

Abstract / Introduction Related Papers Cited by
  • In the present article we propose a reduction point algorithm for any Fuchsian group in the absence of parabolic transformations. We extend to this setting classical algorithms for Fuchsian groups with parabolic transformations, such as the flip flop algorithm known for the modular group $\mathbf{SL}(2, \mathbb{Z})$ and whose roots go back to [9]. The research has been partially motivated by the need to design more efficient codes for wireless transmission data and for the study of Maass waveforms under a computational point of view.
    Mathematics Subject Classification: 11F06, 11Y16, 14G50, 30F35, 65Y04, 94B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Alsina and P. Bayer, Quaternion Orders, Quadratic Forms and Shimura Curves, Amer. Math. Soc., Providence, 2004.

    [2]

    P. Bayer, Contributions to Shimura curves, in Win-Women in Numbers: Research Directions in Number Theory, 2011, 15-33.

    [3]

    I. Blanco-Chacón, C. Hollanti and D. Remón, Fuchsian codes for AWGN channels, in International Workshop on Coding and Cryptography 2013, Bergen, 496-507.

    [4]

    E. Brandani da Silva, M. Firer, S. Costa and R. Palazzo, Signal constellations in the hyperbolic plane: a proposal for new communication systems, J. Franklin Institute, 343 (2006), 69-82.doi: 10.1016/j.jfranklin.2005.09.001.

    [5]

    E. D. Carvalho, A. A. Andrade, R. Palazzo and J. Vieira, Arithmetic Fuchsian groups and space time codes, Comput. Appl. Math., 30 (2011), 485-498.doi: 10.1590/S1807-03022011000300001.

    [6]

    D. Hejhal and B. Rackner, On the topography of Maass waveforms for PSL(2,Z), Exp. Math., 1 (1992), 275-305.

    [7]

    S. Katok, Fuchsian Groups, Univ. Chicago Press, 1992.

    [8]

    A. Lascurain, Some presentations for $\overline{\Gamma}_0(N)$, Conform. Geom. Dyn., 6 (2002), 33-60.doi: 10.1090/S1088-4173-02-00073-5.

    [9]

    J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973.

    [10]

    F. Strömberg, Maass waveforms on $(\Gamma_0(N), \chi)$ (computational aspects), in Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology (eds. J. Bolt and F. Steiner), Cambridge Univ. Press, 2012, 187-228.

    [11]

    J. Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux, 21 (2009), 467-489.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return