Citation: |
[1] |
O. Bolza, On binary sextics with linear transformations into themselves, Amer. J. Math., 10 (1887), 47-70.doi: 10.2307/2369402. |
[2] |
D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, in Adv. Crypt. - CRYPTO' 2001 (ed. J. Kilian), Springer-Verlag, Berlin, 2001, 213-229.doi: 10.1007/3-540-44647-8_13. |
[3] |
J. Boxall, D. Grant F. and Leprévost, 5-torsion points on curves of genus 2, J. London Math. Soc., 64 (2001), 29-43.doi: 10.1017/S0024610701002113. |
[4] |
A. Clebsch, Zur Theorie der binären Formen sechster Ordnung und zur Dreitheilung a der hyperelliptischen Funktionen, Abh. der k. Ges. Wiss. zu Göttingen, 14 (1869), 17-75. |
[5] |
J.-M. Couveignes and J.-G. Kammerer, The geometry of flex tangents to a cubic curve and its parameterizations, J. Symb. Comput., 47 (2012), 266-281.doi: 10.1016/j.jsc.2011.11.003. |
[6] |
N. Elkies, The identification of three moduli spaces, preprint, arXiv:math/9905195 |
[7] |
R. R. Farashahi, Hashing into Hessian curves, in Africa CRYPT, 2011, 278-289.doi: 10.1007/978-3-642-21969-6_17. |
[8] |
P.-A. Fouque and M. Tibouchi, Deterministic encoding and hashing to odd hyperelliptic curves, in Pairing-Based Cryptography (eds. M. Joye, A. Miyaji and A. Otsuka), Springer, 2010, 265-277.doi: 10.1007/978-3-642-17455-1_17. |
[9] |
M. Fried, Combinatorial computation of moduli dimension of Nielsen classes of covers, in Graphs and Algorithms, 1989, 61-79.doi: 10.1090/conm/089/1006477. |
[10] |
M. Harrison, Explicit solution by radicals, gonal maps and plane models of algebraic curves of genus $5$ or $6$, J. Symb. Comp., 51 (2013), 3-21.doi: 10.1016/j.jsc.2012.03.004. |
[11] |
T. Icart, How to hash into elliptic curves, in CRYPTO, 2009, 303-316.doi: 10.1007/978-3-642-03356-8_18. |
[12] |
J.-I. Igusa, Arithmetic variety of moduli for genus two, Ann. Math., 72 (1960), 612-649.doi: 10.2307/1970233. |
[13] |
J.-G. Kammerer, R. Lercier and G. Renault, Encoding points on hyperelliptic curves over finite fields in deterministic polynomial time, in Pairing, 2010, 278-297.doi: 10.1007/978-3-642-17455-1_18. |
[14] |
S. Lang, Algebra, Springer, 2002.doi: 10.1007/978-1-4613-0041-0. |
[15] |
R. Lercier, C. Ritzenthaler and J. Sijsling, Fast computation of isomorphisms of hyperelliptic curves and explicit descent, in ANTS X - Proc. 10th Algor. Number Theory Symp. (eds. E.W. Howe and K.S. Kedlaya), Math. Sci. Publ., 2013, 463-486. |
[16] |
J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, Springer-Verlag, Berlin, 2000. |
[17] |
G. Salmon, Lessons Introductory to the Modern Higher Algebra, Chelsea Publishing Co., New York, 1885. |
[18] |
A. Schinzel and M. Skałba, On equations $y^2=x^n+k$ in a finite field, Bull. Pol. Acad. Sci. Math., 52 (2004), 223-226.doi: 10.4064/ba52-3-1. |
[19] |
M. Skałba, Points on elliptic curves over finite fields, Acta Arith., 117 (2005), 293-301.doi: 10.4064/aa117-3-7. |
[20] |
A. Shallue and C. E. van de Woestijne, Construction of rational points on elliptic curves over finite fields, in Algorithmic Number Theory, Springer, Berlin, 2006, 510-524.doi: 10.1007/11792086_36. |
[21] |
H. Stichtenoth, Algebraic Function Fields and Codes, Second edition, Springer-Verlag, Berlin, 2009. |
[22] |
M. Ulas, Rational points on certain hyperelliptic curves over finite fields, Bull. Polish Acad. Sci. Math., 55 (2007), 97-104.doi: 10.4064/ba55-2-1. |