[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25

Abstract / Introduction Related Papers Cited by
  • It is shown that the maximal size of a $2$-arc in the projective Hjelmslev plane over $\mathbb Z$25 is $21$, and the $(21,2)$-arc is unique up to isomorphism. Furthermore, all maximal $(20,2)$-arcs in the affine Hjelmslev plane over $\mathbb Z$25 are classified up to isomorphism.
    Mathematics Subject Classification: Primary: 51C05, 51E21; Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Cronheim, Dual numbers, Witt vectors, and Hjelmslev planes, Geom. Dedicata, 7 (1978), 287-302.doi: 10.1007/BF00151527.

    [2]

    L. Hemme and D. Weijand, Arcs in projektiven Hjelmslev-Ebenen, Fortgeschrittenenpraktikum, Technische Universität München, 1999.

    [3]

    T. Honold and M. Kiermaier, Classification of maximal arcs in small projective Helmslev geometries, in "Proceedings of the Tenth International Workshop on Algebraic and Combinatorial Coding Theory 2006,'' (2006), 112-117.

    [4]

    T. Honold and M. Kiermaier, The existence of maximal $(q^2,2)$-arcs in projective Hjelmslev planes over chain rings of odd prime characteristic, in preparation, 2011.

    [5]

    T. Honold and I. Landjev, Linear codes over finite chain rings, Electr. J. Comb., 7 (2000), #R11.

    [6]

    T. Honold and I. Landjev, On arcs in projective Hjelmslev planes, Discrete Math., 231 (2001), 265-278.doi: 10.1016/S0012-365X(00)00323-X.

    [7]

    T. Honold and I. Landjev, On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic, Finite Fields Appl., 11 (2005), 292-304.doi: 10.1016/j.ffa.2004.12.004.

    [8]

    M. Kiermaier, "Arcs und Codes über endlichen Kettenringen,'' Diploma thesis, Technische Universität München, 2006.

    [9]

    M. Kiermaier and M. Koch, New complete $2$-arcs in the uniform projective Hjelmslev planes over chain rings of order $25$, in "Proceedings of the Sixth International Workshop on Optimal Codes and Related Topics 2009,'' (2009), 206-113.

    [10]

    M. Kiermaier and A. KohnertOnline tables of arcs in projective Hjelmslev planes, http://www.algorithm.uni-bayreuth.de

    [11]

    M. Kiermaier and A. Kohnert, New arcs in projective Hjelmslev planes over Galois rings, in "Proceedings of the Fifth International Workshop on Optimal Codes and Related Topics 2007,'' (2007), 112-119.

    [12]

    W. Klingenberg, Projektive und affine Ebenen mit Nachbarelementen, Math. Z., 60 (1954), 384-406.doi: 10.1007/BF01187385.

    [13]

    D. E. Knuth, Estimating the efficiency of backtrack programs, Math. Comput., 29 (1975), 121-136.doi: 10.2307/2005469.

    [14]

    A. Kreuzer, "Projektive Hjelmslev-Räume,'' Ph.D. thesis, Technische Universität München, 1988.

    [15]

    S. Kurz, Caps in $\mathbbZ_n^2$, Serdica J. Comput., 3 (2009), 159-178.

    [16]

    R. Laue, Construction of combinatorial objects - a tutorial, Bayreuther Math. Schr., 43 (1993), 53-96.

    [17]

    R. Laue, Constructing objects up to isomorphism, simple $9$-designs with small parameters, in "Algebraic Combinatorics and Applications,'' Springer, Berlin, (2001), 232-260.

    [18]

    H. Lüneburg, Affine Hjelmslev-Ebenen mit transitiver Translationsgruppe, Math. Z., 79 (1962), 260-288.doi: 10.1007/BF01193123.

    [19]

    F. Margot, Pruning by isomorphism in branch-and-cut, Math. Programming, 94 (2002), 71-90.doi: 10.1007/s10107-002-0358-2.

    [20]

    B. McKayNauty, Version 2.2, http://cs.anu.edu.au/~bdm/nauty/

    [21]

    A. A. Nečaev, Finite principal ideal rings, Math. USSR-Sb., 20 (1973), 364-382.doi: 10.1070/SM1973v020n03ABEH001880.

    [22]

    A. A. Nechaev, Finite rings with applications, in "Handbook of Algebra'' (ed. M. Hazewinkel), Elsevier Science Publishers, (2008), 213-320.

    [23]

    R. Raghavendran, Finite associative rings, Composito Math., 21 (1969), 195-229.

    [24]

    R. C. Read, Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations, Ann. Discrete Math., 2 (1978), 107-120.doi: 10.1016/S0167-5060(08)70325-X.

    [25]

    B. Schmalz, The $t$-designs with prescribed automorphism group, new simple $6$-designs, J. Comb. Des., 1 (1993), 125-170.doi: 10.1002/jcd.3180010204.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return