Joint discrete approximation of a pair of analytic functions by periodic zeta-functions
- that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
- that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
- on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
Author Name | Affiliation |
---|---|
Aidas Balčiūnas | Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania |
Author Name | Affiliation |
---|---|
Virginija Garbaliauskienė | Institute of Regional Development, Šiauliai University, P. Višinskio str. 25, LT-76351, Šiauliai, Lithuania |
Author Name | Affiliation |
---|---|
Julija Karaliūnaitė | Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio av. 11, LT-10223 Vilnius, Lithuania |
Author Name | Affiliation |
---|---|
Renata Macaitienė | Institute of Regional Development, Šiauliai University, P. Višinskio str. 25, LT-76351, Šiauliai, Lithuania |
Author Name | Affiliation |
---|---|
Jurgita Petuškinaitė | Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania |
Author Name | Affiliation |
---|---|
Audronė Rimkevičienė | Faculty of Business and Technologies, Šiauliai State College, Aušros av. 40, LT-76241, Šiauliai, Lithuania |
Abstract
In the paper, the problem of simultaneous approximation of a pair of analytic functions by a pair of discrete shifts of the periodic and periodic Hurwitz zeta-function is considered. The above shifts are defined by using the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function. For the proof of approximation theorems, a weak form of the Montgomery pair correlation conjecture is applied.
Keyword : Hurwitz zeta-function, non-trivial zeros of the Riemann zeta-funct fec ion, periodic zeta-function, periodic Hurwitz zeta-function, universality
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
V. Franckevič, A. Laurinčikas and D. Šiaučiūnas. On approximation of analytic functions by periodic Hurwitz zeta-functions. Math. Modell. Analysis, 24(1):20– 33, 2019. htt fec ps://doi.org/10.3846/mma.2019.002
V. Garbaliauskienė, J. Karaliūnaitė and R. Macaitienė. On discrete value distribution of certain compositions. Math. Modell. Analysis, 24(1):34–42, 2019. https://doi.org/10.3846/mma.2019.003
R. Garunkštis and A. Laurinčikas. Discrete mean square of the Riemann zetafunction over imaginary parts of its zeros. Periodica Math. Hung., 76(2):217–228, 2018. https://doi.org/10.1007/s10998-017-0228-6
R. Garunkštis and A. Laurinčikas. The Riemann hypothesis and universality of the Riemann zeta-function. Math. Slovaca, 68(4):741–748, 2018. https://doi.org/10.1515/ms-2017-0141
R. Garunkštis, A. Laurinčikas and R. Macaitienė. Zeros of the Riemann zeta-function and its universality. Acta Arith., 181(2):127–142, 2017. https://doi.org/10.4064/aa8583-5-2017
A. Javtokas and A. Laurinčikas. Universality of the periodic Hurwitz zeta-function. Integral Transf. Spec. Functions, 17:711–722, 2006. https://doi.org/10.1080/10652460600856484
J. Kaczorowski. Some remarks on the universality of periodic L-functions. In R. Steuding and J. Steuding(Eds.), New directions in value-distribution theory of zeta and L-functions, pp. 113–120. Shaker Verlag, Aachen, 2009.
R. Kačinskaitė and A. Laurinčikas. The joint distribution of periodic zeta-functions. Studia Sci. Math. Hungarica, 48(2):257–279, 2011. https://doi.org/10.1556/SScMath.48.2011.2.1162
L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. John Wiley and Sons, New York, 1974.
A. Laurinčikas. Voronin-type theorem for periodic Hurwitz zeta-functions. Sb. Math., 198:231–262, 2007. https://doi.org/10.1070/SM2007v198n02ABEH003835
A. Laurinčikas. Joint universality for periodic Hurwitz zeta-functions. Izv. Math., 72:741–760, 2008. https://doi.org/10.1070/IM2008v072n04ABEH002421
A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. Izv. Math., 74(3):515–539, 2010. https://doi.org/10.1070/IM2010v074n03ABEH002497
A. Laurinčikas. Universality of composite functions of periodic zeta-functions. Sb. Math., 203:1631–1643, 2012. https://doi.org/10.1070/SM2012v203n11ABEH004279
A. Laurinčikas. The joint discrete universality of periodic zeta-functions. In J. Sander et al.(Ed.), From Arithmetic to Zeta-Functions, Number Theory in Memory of Wolfgang Schwarz, pp. 231–246. Springer, 2016. https://doi.org/10.1007/978-3-319-28203-9¬_15
A. Laurinčikas. Universality theorems for zeta-functions with periodic coefficients. Sb. Math. J., 57:330–339, 2016. https://doi.org/10.1134/S0037446616020154
A. Laurinčikas. A discrete version of the Mishou theorem. II. Proc. Steklov Inst. Math., 296(1):172–182, 2017. https://doi.org/10.1134/S008154381701014X
A. Laurinčikas. On discrete universality of the Hurwitz zeta-functions. Results Math., 72(1-2):907–917, 2017. https://doi.org/10.1007/s00025-017-0702-8
A. Laurinčikas. Joint value distribution theorems for the Riemann and Hurwitz zeta-functions. Moscow Math. J., 18(2):349–366, 2018. https://doi.org/10.17323/1609-4514-2018-18-2-349-366
A. Laurinčikas. Joint discrete universality for periodic zeta-functions. Quaest. Math., 42(5):687–699, 2019. https://doi.org/10.2989/16073606.2018.1481891
A. Laurinčikas. Non-trivial zeros of the Riemann zeta-function and joint universality theorems. J. Math. Anal. Appl., 475(1):395–402, 2019. https://doi.org/10.1016/j.jmaa.2019.02.047
A. Laurinčikas and R. Macaitienė. The discrete universality of the periodic Hurwitz zeta-function. Integral Transf. Spec. Functions, 20:673–686, 2009. https://doi.org/10.1080/10652460902742788
A. Laurinčikas and R. Macaitienė. Joint approximation of analytic functions by shifts of the Riemann and periodic Hurwitz zeta-functions. Appl. Anal. Discrete Math., 12(2):508–527, 2018. https://doi.org/10.2298/AADM170713016L
A. Laurinčikas, R. Macaitienė, D. Mochov and D. Šiaučiūnas. Universality of the periodic Hurwitz zeta-function with rational parameter. Siber. Math. J., 59(5):894–900, 2018. https://doi.org/10.1134/S0037446618050130
A. Laurinčikas and D. Mochov. A discrete universality theorem for the periodic Hurwitz zeta-functions. Chebysh. Sb., 17:148–159, 2016.
A. Laurinčikas and J. Petuškinaitė. Universality of Dirichlet L-functions and non-trivial zeros of the Riemann zeta-function. Sb. Math., 210, 2019. https://doi.org/10.1070/SM9194
A. Laurinčikas and D. Šiaučiūnas. Remarks on the universality of periodic zeta-functions (in Russian). Math. Notes., 80(3-4):532–538, 2006. https://doi.org/10.1007/s11006-006-0171-y
R. Macaitienė, M.Stoncelis and Šiaučiūnas. A weighted discrete universality theorem for periodic zeta-functions. II. Math. Modell. Analysis, 22(6):750–762, 2017. https://doi.org/10.3846/13926292.2017.1365779
R. Macaitienė, M. Stoncelis and D. Šiaučiūnas. A weighted universality theorem for periodic zeta-functions. Math. Modell. Analysis, 22(1):95–105, 2017. https://doi.org/10.3846/13926292.2017.1269373
R. Macaitienė and D. Šiaučiūnas. Joint universality of Hurwitz zeta-functions and nontrivial zeros of the Riemann zeta-function. Lith. Math. J., 59(1):81–95, 2019. https://doi.org/10.1007/s10986-019-09423-2
S.N. Mergelyan. Uniform approximations to functions of complex variable. Usp. Mat. Nauk., 7(2):31–122, 1952 (in Russian).
H. L. Montgomery. Topics in Multiplicative Number Theory. Lect. Notes Math., Vol. 227, Springer, Berlin, Heidelberg, New York, 1971. https://doi.org/10.1007/BFb0060851
H. L. Montgomery. The pair correlation of zeros of the zeta function. In H.G. Diamond(Ed.), Analytic Number Theory, volume 24 of Proc. Sympos. Pure Math., pp. 181–193. Amer. Math. Soc., Providence, RI, 1973. https://doi.o fec rg/10.1090/pspum/024/9944
J. Steuding. The roots of the equation ζ(s) = a are uniformly distributed modulo one. In A. Laurinčikas et al.(Ed.), Analytic and Probabilistic Methods in Number Theory, pp. 243–249, Vilnius, 2012. TEV.
E. C. Titchmarsh. The Theory of the Riemann zeta-function. 2nd ed. revised by D.R. Heath-Brown, Clarendon Press, Oxford, 1986.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.
Citation text in the Modal..