[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
*
 
iForest - Biogeosciences and Forestry
*

Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands

Andrea Cutini, Francesco Chianucci   , Maria Chiara Manetti

iForest - Biogeosciences and Forestry, Volume 6, Issue 6, Pages 331-335 (2013)
doi: https://doi.org/10.3832/ifor0941-006
Published: Aug 29, 2013 - Copyright © 2013 SISEF

Research Articles


Tree biomass plays a key role in sustainable forest management and in determining forest carbon stocks. Accurate estimates based on species-specific empirical data are necessary for regional and national inventories and forest carbon management. In this study, we obtained allometric relationships for volume and aboveground biomass for stone pine (Pinus pinea) based on empirical data collected in four coastal stands in Italy. Root sampling was also performed. The results enabled generalized equations for volume and aboveground biomass to be developed. However, an analysis also showed several differences in biomass allocation in stone pine resulting from different stand characteristics, emphasizing the importance of stand-dependent factors for adjusting regional or national biomass calculations. Biomass expansion factors were also provided. This study provides tools to help forest managers in quantifying volume and biomass, thereby contributing to the accurate estimation of carbon sequestration and stocks in stone pine stands in Italy.

  Keywords


Allometric Equations, Aboveground Biomass, Belowground Biomass, Carbon Stocks, Biomass Expansion Factor

Authors’ address

(1)
Andrea Cutini
Francesco Chianucci
Maria Chiara Manetti
Consiglio per la Ricerca e la sperimentazione in Agricoltura, Forestry Research Centre (CRA-SEL), v.le S. Margherita 80, I-52100 Arezzo (Italy )

Corresponding author

 
Francesco Chianucci
francesco.chianucci@entecra.it

Citation

Cutini A, Chianucci F, Manetti MC (2013). Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands. iForest 6: 331-335. - doi: 10.3832/ifor0941-006

Academic Editor

Luca Salvati

Paper history

Received: Dec 28, 2012
Accepted: May 14, 2013

First online: Aug 29, 2013
Publication Date: Dec 02, 2013
Publication Time: 3.57 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 58694
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 48720
Abstract Page Views: 3509
PDF Downloads: 4828
Citation/Reference Downloads: 95
XML Downloads: 1542

Web Metrics
Days since publication: 4147
Overall contacts: 58694
Avg. contacts per week: 99.07

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2013): 18
Average cites per year: 1.64

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Alberti G, Candido P, Peressotti A, Turco S, Piussi P, Zerbi G (2005)
Aboveground biomass relationships for mixed ash (Fraxinus excelsior L. and Ulmus glabra Hudson) stands in Eastern Prealps of Friuli Venezia Giulia (Italy). Annals of Forest Science 62 (8): 831-836.
CrossRef | Gscholar
(2)
Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S (2006)
Convergent tapering of xylem conduits in different woody species. New Phytologist 169 (2): 279-290.
CrossRef | Gscholar
(3)
Beauchamp JJ, Olson JS (1973)
Corrections for bias in regression estimates after logarithmic transformation. Ecology 54 (6): 1403.
CrossRef | Gscholar
(4)
Brown S (2002)
Measuring carbon in forests: current status and future challenges. Environmental Pollution 116 (3): 363-372.
CrossRef | Gscholar
(5)
Calama R, Montero G (2004)
Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research 34 (1): 150-163.
CrossRef | Gscholar
(6)
Chave J, Riera B, Dubois MA (2001)
Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology 17 (1): 79-96.
CrossRef | Gscholar
(7)
Ciancio O, Cutini A, Mercurio R, Veracini A (1986)
Sulla struttura della pineta di pino domestico di Alberese. Ann. Ist. Sper. Selvicoltura 17: 169-236. [in Italian]
Gscholar
(8)
Correia AC, Tomé M, Pachecho CA, Faias S, Dias AC, Freire J, Carvalho PO, Pereira JS (2010)
Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. Forest Systems 19: 418-433.
Gscholar
(9)
Cutini A (2002)
Pinus pinea L. In: “Pines of silvicultural importance: compiled from the forestry compendium”. CAB International, CABI, pp. 608.
Online | Gscholar
(10)
Cutini A, Amorini E, Manetti MC (2002)
Sul ruolo della gestione e del trattamento selvicolturale nella vicenda della Pineta di Castel Fusano. Monti e Boschi 53 (3-4): 4-9. [in Italian]
Gscholar
(11)
Cutini A, Hajny M, Gugliotta O, Manetti M, Amorini E (2009)
Effect of stand structure on models for volume and aboveground biomass assessment (Castelfusano pinewood, Roma). Forest@ 6 (1): 75-84. [in Italian with English abstract]
CrossRef | Gscholar
(12)
Fady B, Fineschi S, Vengramin GG (2004)
EUFORGEN Technical guidelines for genetic conservation and use of Italian stone pine (Pinus pinea). International Plant Genetic Resources Institute, FAO, Rome, Italy, pp. 6.
Gscholar
(13)
Frattegiani M, Mercurio M, Mencuccini M, Profili W (1993)
Quantitative analysis of stone pine (Pinus pinea L.) root systems morphology and its relationship with water table and soil characters. Investigacion Agraria, Sistemas y Recursos Forestales 3: 405-416.
Gscholar
(14)
Gracia C, Sabatè S, Vayreda J, Ibáñez JJ (2002)
Abovegorund biomass expansion factors and biomass equations of forests in Catalonia. Presentation at the COST E21 Meeting, Besalu (Spain) July 2002.
Online | Gscholar
(15)
IPCC (2003)
Good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme, Hayama, Japan, pp. 295.
Gscholar
(16)
Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2004)
Comprehensive database of diameter-based biomass regressions for North American tree species. General Technical Report NE-319, Northeastern Research Station, USDA Forest Service, Newtown Square, PA, USA, pp. 48.
Gscholar
(17)
Kaitaniemi P (2004)
Testing allometric scaling laws. Journal of Theoretical Biology 228 (2): 149-153.
Gscholar
(18)
Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001)
Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146 (1-3): 199-209.
CrossRef | Gscholar
(19)
Levy PE, Hale SE, Nicoll BV (2004)
Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry 77: 421-430.
CrossRef | Gscholar
(20)
Mazza G, Amorini E, Cutini A, Manetti MC (2011)
The influence of thinning on rainfall interception by L. in Mediterranean coastal stands (Castel Fusano-Rome). Annals of Forest Science 68: 1323-1332.
CrossRef | Gscholar
(21)
Montero G, Ruiz-Peinado R, Muñoz M (2005)
Producción de biomasa y fijación de CO2 por los bosques españoles. Monografías INIA, Serie Forestal no. 13, Madrid, Spain, pp. 270.
Gscholar
(22)
Mutke S, Calama R, González-Martínez SC, Montero G, Gordo FJ, Bono D, Gil L (2012)
Mediterranean Stone pine: botany and horticulture. Horticultural Reviews 39: 153-201.
CrossRef | Gscholar
(23)
Mutke S, Gordo FJ, Gil L (2005)
Cone yield characterization of a stone pine (Pinus pinea L.) clone bank.
Gscholar
(24)
Parresol BR (1999)
Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45 (4): 573-593.
Gscholar
(25)
Pastor J, Aber JD, Melillo JM (1984)
Biomass prediction using generalized allometric regressions for some northeast tree species. Forest Ecology and Management 7 (4): 265-274.
CrossRef | Gscholar
(26)
Payandeh B (1981)
Choosing regression models for biomass prediction equations. The Forest Chronical 57 (5): 229-232.
CrossRef | Gscholar
(27)
Pilli R, Anfodillo T, Carrer M (2006)
Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management 237 (1-3): 583-593.
CrossRef | Gscholar
(28)
Quézel P, Medáil F (2003)
Écologie et biogéographie des forêts du basin méditerranéen. Elsevier, Paris, France.
Gscholar
(29)
R Development Core Team (2011)
R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Gscholar
(30)
Ruiz-Peinado, R, del Rio M, Montero G (2011)
New models for estimating the carbon sink capacity of Spanish softwood species. Forest Systems 20: 176-188.
CrossRef | Gscholar
(31)
Somogyi Z, Teobaldelli M, Federici S, Matteucci G, Paglari V, Grassi G, Seufert G (2008)
Allometric biomass and carbon factors database. iForest 1 (1): 107-113.
CrossRef | Gscholar
(32)
Sprugel DG (1983)
Correcting for bias in log-transformed allometric equations. Ecology 64: 209-210.
CrossRef | Gscholar
(33)
Tabacchi G, Di Cosmo L, Gasparini P (2011a)
Aboveground tree volume and phytomass prediction equations for forest species in Italy. European Journal of Forest Research 130: 911-934.
CrossRef | Gscholar
(34)
Tabacchi G, Di Cosmo L, Gasparini P, Morelli S (2011b)
Stima del volume e della fitomassa delle principali specie forestali italiane. Equazioni di previsione, tavole del volume e tavole della fitomassa arborea epigea. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di Ricerca per il Monitoraggio e la Pianificazione Forestale, Trento, Italy, pp. 412. [in Italian]
Gscholar
(35)
Vendramin GG, Fady B, Gonzalez-Martinez SC, Hu FS, Scotti I, Sebastiani F, Soto A, Petit RJ (2008)
Genetically depauperate but widespread: the case of an emblematic Mediterranean pine. Evolution 62: 620-688.
CrossRef | Gscholar
(36)
Walle IV, Van Camp N, Perrin D, Lemeur R, Verheyen K, Van Wesemael B, Laitat, E. (2005)
Growing stock-based assessment of the carbon stock in the Belgian forest biomass. Annals of Forest Science 62: 853-864.
CrossRef | Gscholar
(37)
West GB, Brown JH, Enquist BJ (1999)
A general model for the structure and allometry of plant vascular systems. Nature 400: 664-667.
CrossRef | Gscholar
(38)
Zar JH (1996)
Biostatistical analysis. Prentice-Hall, Englewood Cliffs, NJ, USA.
Gscholar
(39)
Zianis D, Mencuccini M (2003)
Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp. Annals of Forest Science 60 (5): 439-448.
CrossRef | Gscholar
(40)
Zianis D, Mencuccini M (2004)
On simplifying allometric analyses of forest biomass. Forest Ecology and Management 187 (2-3): 311-332.
CrossRef | Gscholar
(41)
Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005)
Biomass and stem volume equations for tree species in Europe. Silva Fennica 4: 1-63.
Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info