Abstract
This tutorial provides instruction on how to use the eye tracking technology built into virtual reality (VR) headsets, emphasizing the analysis of head and eye movement data when an observer is situated in the center of an omnidirectional environment. We begin with a brief description of how VR eye movement research differs from previous forms of eye movement research, as well as identifying some outstanding gaps in the current literature. We then introduce the basic methodology used to collect VR eye movement data both in general and with regard to the specific data that we collected to illustrate different analytical approaches. We continue with an introduction of the foundational ideas regarding data analysis in VR, including frames of reference, how to map eye and head position, and event detection. In the next part, we introduce core head and eye data analyses focusing on determining where the head and eyes are directed. We then expand on what has been presented, introducing several novel spatial, spatio-temporal, and temporal head–eye data analysis techniques. We conclude with a reflection on what has been presented, and how the techniques introduced in this tutorial provide the scaffolding for extensions to more complex and dynamic VR environments.
Similar content being viewed by others
Data availability
The data underlying the results presented in the study are available in the repository Open Science Framework (https://doi.org/10.17605/OSF.IO/THR89). None of the experiments was preregistered.
Code availability
The code of the main analysis programs is available in the repository Open Science Framework (https://doi.org/10.17605/OSF.IO/THR89).
References
360cities (n.d.) 360cities. Retrieved October 10, 2023, from https://360cities.net
Andersson, R., Larsson, L., Holmqvist, K., Stridh, M., & Nyström, M. (2017). One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms. Behavior Research Methods, 49, 616–637. https://doi.org/10.3758/s13428-016-0738-9
Anderson, N. C., Bischof, W. F., Foulsham, T., & Kingstone, A. (2020). Turning the (virtual) world around: Patterns in saccade direction vary with picture orientation and shape in virtual reality. Journal of Vision, 20(8), 1–19. https://doi.org/10.1167/jov.20.8.21
Anderson, N. C., Bischof, W. F., & Kingstone, A. (2023). Eye Tracking in Virtual Reality. In C. Maymon, G. Grimshaw, & Y. C. Wu (Eds.), Virtual Reality in Behavioral Neuroscience: New Insights and Methods. Springer, UK: Current Topics in Behavioral Neurosciences. https://doi.org/10.1007/7854_2022_409
Backhaus, D., Engbert, R., Rothkegel, L. O. M., & Trukenbrod, H. A. (2020). Task-dependence in scene perception: Head unrestrained viewing using mobile eye-tracking. Journal of Vision, 20(5), 3–3. https://doi.org/10.1167/jov.20.5.3
Barnes, G. R. (1979). Head-eye coordination in normals and in patients with vestibular disorders. Advances in Oto-Rhino-Laryngology, 25, 197–201. https://doi.org/10.1159/000402942
Batschelet, E. (1981). Circular statistics in biology. Academic Press.
Bischof, W. F., Anderson, N. C., & Kingstone, A. (2019). Temporal Methods for Eye Movement Analysis. In C. Klein & U. Ettinger (Eds.), Eye Movement Research: An Introduction to its Scientific Foundations and Applications (pp. 407–448). Springer. https://doi.org/10.1007/978-3-030-20085-5_10
Bischof, W. F., Anderson, N. C., Doswell, M. T., & Kingstone, A. (2020). Visual exploration of omni-directional panoramic scenes. Journal of Vision, 20(7), 1–29. https://doi.org/10.1167/jov.20.7.23
Bischof, W. F., Anderson, N. C., & Kingstone, A. (2023). Eye and head movements while encoding and recognizing panoramic scenes in virtual reality. PLoS ONE, 18(2), e0282030. https://doi.org/10.1371/journal.pone.0282030
Bizzi, E., Kalil, R. E., & Tagliasco, V. (1971). Eye-head coordination in monkeys: Evidence for centrally patterned organization. Science, 173, 452–454.
Boger, Y. (2017). Understanding Pixel Density & Retinal Resolution, and Why It’s Important for AR/VR Headsets. Retrieved October 10, 2023, from https://www.roadtovr.com/understanding-pixel-density-retinal-resolution-and-why-its-important-for-vr-and-ar-headsets
Bourke, P. (2020). Converting to/from cubemaps. http://www.paulbourke.net/panorama/cubemaps
Carpenter, R. H. S. (1988). Movements of the Eyes (2nd ed.). Pion Limited.
Chapel, M.-N., & Bouwmans, T. (2020). Moving objects detection with a moving camera: A comprehensive review. Computer Science Reviews, 38, 100310. https://doi.org/10.1016/j.cosrev.2020.100310
Clay, V., König, P. & König, S. (2019). Eye tracking in virtual reality. Journal of Eye Movement Research, 12(1):3. https://doi.org/10.16910/jemr.12.1.3
Dar, A. H., Wagner, A. S., & Hanke, M. (2021). REMoDNaV: Robust eye-movement classification. Behavior Research Methods, 53, 399–414. https://doi.org/10.3758/s13428-020-01428-x
David, E. J., Beitner, J., & Võ, M.L.-H. (2021). The importance of peripheral vision when searching 3D real-world scenes: A gaze-contingent study in virtual reality. Journal of Vision, 21(7), 3–3. https://doi.org/10.1167/jov.21.7.3
David, E. J., Lebranchu, P., Da Silva, M. P., & Le Callet, P. (2022). What are the visuo-motor tendencies of omnidirectional scene free-viewing in virtual reality? Journal of Vision, 22(12). https://doi.org/10.1167/jov.22.4.12
Doshi, A., & Trivedi, M. M. (2012). Head and eye dynamics during visual attention shifts in complex environments. Journal of Vision, 12(2), 1–16. https://doi.org/10.1167/12.2.9
Einhäuser, W., Moeller, G. U., Schumann, F., Conradt, J., Vockeroth, J., Bartl, K., Schneider, E., & König, P. (2009). Eye-head coordination during free exploration in human and cat. Annals of the New York Academy of Sciences, 1164, 353–366. https://doi.org/10.1111/j.1749-6632.2008.03709.x
Equirectangular Projection. (n.d.). In Wikipedia. Retrieved December 23, 2019, from https://en.wikipedia.org/wiki/Equirectangular_projection
Fisher, N. I., Lewis, T., & Embleton, B. J. J. (2010). Statistical Analysis of spherical data. Cambridge University Press. https://doi.org/10.1017/CBO9780511623059
Foulsham, T., & Kingstone, A. (2017). Are fixations in static natural scenes a useful predictor of attention in the real world? Canadian Journal of Experimental Psychology / Revue canadienne de psychologie expérimentale, 71(2), 172–181. https://doi.org/10.1037/cep0000125
Foulsham, T., Walker, E., & Kingstone, A. (2011). The where, what and when of gaze allocation in the lab and the natural environment. Vision Research, 51(17), 1920–1931. https://doi.org/10.1016/j.visres.2011.07.002
Freedman, E. G. (2008). Coordination of the eyes and head during visual orienting. Experimental Brain Research, 190, 369–387. https://doi.org/10.1007/s00221-008-1504-8
Freedman, E. G., & Sparks, D. L. (1997). Eye–head coordination during head-unrestrained gaze shifts in rhesus monkeys. Journal of Neurophysiology, 77(5), 2328–2348. https://doi.org/10.1152/jn.1997.77.5.2328
Gilchrist, I. D., Brown, V., Findlay, J. M., & Clarke, M. P. (1998). Using the eye-movement system to control the head. Proceedings of the Royal Society of London B, 265, 1831–1836. https://doi.org/10.1098/rspb.1998.0509
Goldman, R. (2022). Rethinking Quaternions. Springer. https://doi.org/10.1007/978-3-031-79549-7
Grafarend, E. W., You, R.-J., & Syffus, R. (2014). Map Projections (2nd ed.). Springer. https://doi.org/10.1007/978-3-642-36494-5
Greene, N. (1986). Environment mapping and other applications of world projections. IEEE Computer Graphics and Applications, 6, 21–29.
Hartley, R. & Zisserman, A. (2004). Multiple View Geometry in Computer Vision (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511811685
Hessels, R. S., Niehorster, D. C., Nyström, M., Andersson, R., & Hooge, I. T. C. (2018). Is the eye-movement field confused about fixations and saccades? A survey among 124 researchers. Royal Society Open Science, 5, 180502. https://doi.org/10.1098/rsos.180502
Holmqvist, K., & Andersson, R. (2017). Eye tracking: A comprehensive Guide to Methods. CreateSpace Independent Publishing Platform.
Hooge, I. T., Niehorster, D. C., Nyström, M., Andersson, R., & Hessels, R. S. (2018). Is human classification by experienced untrained observers a gold standard in fixation detection? Behavior Research Methods, 50, 1864–1881. https://doi.org/10.3758/s13428-016-0738-9
Hooge, I., Hessels, R. S., Niehorster, D. C., Diaz, G. J., Duchowski, A. T., & Pelz, J. B. (2019). From lab-based studies to eye-tracking in virtual and real worlds: Conceptual and methodological problems and solutions. Symposium 4 at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019. Journal of Eye Movement Research, 12(7), https://doi.org/10.16910/jemr.12.7.8. https://doi.org/10.16910/jemr.12.7.8
Jacobs, O., Anderson, N. C., Bischof, W. F., & Kingstone, A. (2020). Into the unknown: Head-based selection is less dependent on peripheral information than gaze-based selection in 360-degree virtual reality scenes. PsyArXiv. https://doi.org/10.31234/osf.io/2qtcw
Jeong, J.-B., Lee, S., Ryu, I.-W., Le, T. T., & Ryu, E.-S. (2020). Towards Viewport-dependent 6DoF 360 Video Tiled Streaming for Virtual Reality Systems. In: MM '20: Proceedings of the 28th ACM International Conference on Multimedia, (pp. 3687–3695). https://doi.org/10.1145/3394171.3413712
Kangas, J., Špakov, O., Raisamo, R., Koskinen, O., Järvenpää, T., & Salmimaa, M. (2022). Head and gaze orienting in hemispheric image viewing. Frontiers in Virtual Reality, 3, 822189. https://doi.org/10.3389/frvir.2022.822189
Kingstone, A., Smilek, D., & Eastwood, J. D. (2008). Cognitive ethology: A new approach for studying human cognition. British Journal of Psychology, 99(3), 317–340. https://doi.org/10.1348/000712607X251243
Komogortsev, O. V., & Karpov, A. (2013). Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behavior Research Methods, 45(1), 203–215. https://doi.org/10.3758/s13428-012-0234-9
Komogortsev, O. V., Gobert, D. V., Jayarathna, S., Koh, D., & Gowda, S. (2010). Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Transactions on Biomedical Engineering, 57(11), 2635–2645. https://doi.org/10.1109/TBME.2010.2057429
Lambers, M. (2020). Survey of cube mapping methods in interactive computer graphics. The Visual Computer, 36, 1043–1051. https://doi.org/10.1007/s00371-019-01708-4
Land, M. F. (2004). The coordination of rotations of the eyes, head and trunk in saccadic turns produced in natural situations. Experimental Brain Research, 159, 151–160. https://doi.org/10.1007/s00221-004-1951-9
Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research, 41(25–26), 3559–3565. https://doi.org/10.1016/S0042-6989(01)00102-X
Land, M. F., & Tatler, B. W. (2009). Looking and acting: Vision and eye movements in natural behaviour. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570943.001.0001
Lang, B. (2018). Understanding the difference between ‘Screen Door Effect’, ‘Mura’, & ‘Aliasing’. Retrieved October 10, 2023, from https://www.roadtovr.com/whats-the-difference-between-screen-door-effect-sde-mura-aliasing-vr-headset
Lange, F. (2019). HMD-Eyes. GitHub Repository, https://github.com/pupil-labs/hmd-eyes
Lapaine, M., & Usery, E. L. (2017). Choosing a map projection. Lecture notes in geoinformation and cartography. Springer. https://doi.org/10.1007/978-3-319-51835-0
Laurutis, V., & Robinson, D. (1986). The vestibulo- ocular reflex during human saccadic eye movements. Journal of Physiology, 373, 209–33. https://doi.org/10.1113/jphysiol.1986.sp016043
Lee, W. J., Kim, J. H., Shin, Y. U., Hwang, S., & Lim, H. W. (2019). Differences in eye movement range based on age and gaze direction. Eye, 33, 1145–1151. https://doi.org/10.1038/s41433-019-0376-4
Leigh, R. J., & Zee, D. S. (2015). The Neurology of Eye Movements (5th ed.). Oxford Academic. https://doi.org/10.1093/med/9780199969289.001.0001
Mardia, K. V., & Jupp, P. E. (2000). Directional Statistics. Wiley. ISBN: 978-0-471-95333-3.
Mehrotra, A., Silver, C., Jacobs, O., Bischof, W. F., & Kingstone, A. (2024). Sit, Stand, or Swivel? Posture Affects Visual Exploration of Panoramic Scenes in Virtual Reality [Manuscript in preparation]. University of British Columbia.
Niehorster, D. C., Li, L., & Lappe, M. (2017). The accuracy and precision of position and orientation tracking in the HTC Vive virtual reality system for scientific research. I-Perception, 8(3), 1–23. https://doi.org/10.1177/2041669517708205
Nyström, M., & Holmqvist, K. (2010). An adaptive algorithm for fixation, saccade and glissade detection in eyetracking data. Behavior Research Methods, 42, 188–204. https://doi.org/10.3758/BRM.42.1.188
Ozioko, O., & Dahiya, R. (2022). Smart tactile gloves for haptic interaction, communication, and rehabilitation. Advanced Intelligent Systems, 4, 2100091. https://doi.org/10.1002/aisy.202100091
Pelz, J., Hayhoe, M., & Loeber, R. (2001). The coordination of eye, head, and hand movements in a natural task. Experimental Brain Research, 139(3), 266–277. https://doi.org/10.1007/s002210100745
Quaternions and spatial rotation. (n.d.) In Wikipedia. Retrieved October 10, 2023, from https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
Risko, E. F., Richardson, D. C., & Kingstone, A. (2016). Breaking the fourth wall of cognitive science: Real-world social attention and the dual function of eye. Current Directions in Psychological Science, 25(1), 70–74. https://doi.org/10.1177/0963721415617806
Rizzo, A. S., Goodwin, G. J., De Vito, A. N., & Bell, J. D. (2021). Recent advances in virtual reality and psychology: Introduction to the special issue. Translational Issues in Psychological Science, 7(3), 213–217. https://doi.org/10.1037/tps0000316
Rötth, A. (1925). Über das praktische Blickfeld [On the practical field of fixation]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 115(2), 314–321.
Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. Proceedings of the Eye-Tracking Research and Applications Symposium (pp. 71–78). ACM Press. https://doi.org/10.1145/355017.355028
Sidenmark, L, & Gellersen, H. (2019). Eye, head and torso coordination during eye shifts in virtual reality. ACM Transaction on Computer–Human Interaction, 27(1), 4:1–4:40. https://doi.org/10.1145/3361218
Sitzmann, V., Serrano, A., Pavel, A., Agrawala, M., Gutiérrez, D., Masia, B., & Wetzstein, G. (2018). Saliency in VR: How do people explore virtual environments? IEEE Transactions on Visualization and Computer Graphics, 24(4), 1633–1642. https://doi.org/10.1109/TVCG.2018.2793599
Solman, G. J., & Kingstone, A. (2014). Balancing energetic and cognitive resources: Memory use during search depends on the orienting effector. Cognition, 132(3), 443–454. https://doi.org/10.1016/j.cognition.2014.05.005
Solman, G. J., Foulsham, T., & Kingstone, A. (2017). Eye and head movements are complementary in visual selection. Royal Society Open Science, 4, 160569. https://doi.org/10.1098/rsos.160569
‘t Hart, B. M., Vockeroth, J., Schumann, F., Bartl, K., Schneider, E., König, P., & Einhäuser, W. (2009). Eye allocation in natural stimuli: Comparing free exploration to head-head-fixed condition viewing conditions. Visual Cognition, 17(6–7), 1132–1158. https://doi.org/10.1080/13506280902812304
The MathWorks Inc. (2023). MATLAB version: 9.14.0 (R2023a). Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com
Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113(4), 766–786. https://doi.org/10.1037/0033-295X.113.4.766
Unity Technologies. (2017). Unity Software: Release 2017.4.1. Retrieved September 15, 2017, from https://unity3d.com
Valenti, R., Sebe, N., & Gevers, T. (2012). Combining head pose and eye location information for gaze estimation. IEEE Transactions on Image Processing, 21(2), 802–815. https://doi.org/10.1109/TIP.2011.2162740
Vince, J. (2021). Quaternions for Computer Graphics. Springer. https://doi.org/10.1007/978-1-4471-7509-4
von Noorden, G. K., & Campos, E. C. (2002). Binocular vision and ocular motility: Theory and management of strabismus (vol. 6). Mosby.
Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010). Sun database: Large-scale scene recognition from abbey to zoo. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 3485–3492). IEEE http://ieeexplore.ieee.org/abstract/document/5539970/
Zangemeister, W. H., & Stark, L. (1982). Types of eye movements: Variable interactions of eye and head movements. Experimental Neurology, 77, 563–577.
Zhan, T., Zou, J., Xiong, J., Chen, H., Liu, S., Dong, Y., & Wu, S.-T. (2020). Planar optics enables chromatic aberration correction in immersive near-eye displays. In: B. C. Kress, & C. Peroz (Eds.), Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR), Proceedings SPIE, 11310 (p 1131003). https://doi.org/10.1117/12.2542365
Zhao, C., Kim, A. S., Beams, R., & Badano, A. (2022). Spatiotemporal image quality of virtual reality head mounted displays. Scientific Reports, 12, 20235. https://doi.org/10.1038/s41598-022-24345-9
Funding
Partial financial support was received from the Natural Sciences and Engineering Research Council of Canada (NCA: Postdoctoral Fellowship; AK: RGPIN-2022-03079).
Natural Sciences and Engineering Research Council of Canada,AK: RGPIN-2022-03079,NCA: Postdoctoral Fellowship
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest / Competing interests
All authors report no conflict of interests
Ethics approval
The study was approved by the ethics board of the University of British Columbia (H10-00527). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.
Consent to participate
All participants provided informed consent prior to participation.
Consent for publication
We confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bischof, W.F., Anderson, N.C. & Kingstone, A. A tutorial: Analyzing eye and head movements in virtual reality. Behav Res 56, 8396–8421 (2024). https://doi.org/10.3758/s13428-024-02482-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3758/s13428-024-02482-5