Abstract
A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity-partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, orfacade, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream. Reciprocal interactions between these visual, What, and Where mechanisms are used to discuss data about visual search and saccadic eye movements, including fast search of conjunctive targets, search of 3-D surfaces, selective search of like-colored targets, attentive tracking of multielement groupings, and recursive search of simultaneously presented targets.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Amari, S., &Takeuchi, A. (1978). Mathematical theory on formation of category detecting nerve cells.Biological Cybernetics,29, 127–136.
Andreou, A. G., &Boahken, K. A. (1991). Modeling inner and outer plexiform retinal processing using nonlinear, coupled resistive networks. InHuman vision, visual processing, and digital display, II. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers,1453, 270–281.
Arend, L. E. (1976). Response of the human eye to spatially sinusoidal gratings at various exposure durations.Vision Research,16, 1311–1315.
Arrington, K. F. (1992),Neural network models for color and brightness perception and binocular rivalry. Unpublished doctoral dissertation, Boston University.
Arrington, K. F. (1993),The temporal dynamics of brightness filling-in. Manuscript submitted for publication.
Asfour, Y. R., Carpenter, G. A., Grossberg, S., &Lesher, G. W. (1993).Fusion ARTMAP: A neural network architecture for multichannel data fusion and classification (Tech. Rep. No. CAS/CNS-TR-93-006). Boston: Boston University, (Proceedings of the World Congress on Neural Networks [Vol. II, pp. 210-215]. Hillsdale, NJ: Erlbaum.)
Badcock, D. R., &Westheimer, G. (1985a). Spatial location and hyper-acuity: The centre/surround localization contribution function has two substrates.Vision Research,25, 1259–1267.
Badcocx, D R, &Westheimer, G. (1985b). Spatial location and hyperacutry Flank position within the centre and surround zonesSpatial Vision.1, 3–11.
Beck, J., Graham, N, &Sutter, A (1991) Lightness differences and the perceived segregation of regions and populationsPerception & Psychophysics,49, 257–269.
Beck, J., Prazdny, K, &Ivry, R (1984) The perception of transparency with achromatic colorsPerception & Psychophysics,35, 407–422
Beck, J, Prazdny, K., &Rosenfeld, A (1983). A theory of textural segmentation In J Beck, B. Hope, & A Rosenfeld (Eds).Human and machine vision New York: Academic Press.
Beck, J, Rosenfeld, A., &Ivry, R (1990). Line segregationSpatial Vision,4, 75–101
Beck, J, Sutter.A., &Ivry, R (1987) Spatial frequency channels and perceptual grouping in texture segregationComputer Vision, Graphics, & Image Processing,37, 299–325
Bergen, J R (1991). Theories of visual texture perception. In D M Regan (Ed.),Spatial vision (pp 114–134) New York: Macmillan.
Biederman, I (1985). Human image understanding Recent research and a theory.Computer Vision, Graphics, & Image Processing,32, 29–73.
Biederman, I. (1987) Recognition-by-components A theory of human image understanding.Psychological Review,94, 115–147.
Biederman, I, &Ju, G. (1988) Surface versus edge-based determinants of visual recognition.Cognitive Psychology,20, 38–64
Bienenstock, E L, Cooper, L N, &Munro, P W (1982) Theory for the development of neuron selectivity Orientation specificity and binocular interaction in visual cortex.Journal of Neuroscience,2, 32–48
Blank, A A. (1978) Metric geometry in human binocular perception Theory and fact. In E. L. J. Leeuwenberg & H F. J M. Buffart (Eds),Formal theories of visual perception (pp. 83–102). New York Wiley.
Blasdel, G G (1989). Topography of visual function as shown with voltage-sensitive dyes. In J. J. Lund (Ed.),Sensory processing in the mammalian brain (pp. 242–268). New York Oxford University Press
Bowen, R., Pola, J, &Matin, L. (1974), Visual persistence: Effects of flash luminance, duration, and energyVision Research,14, 295–303.
Boynton, R. M, Eskew, R. T., Jr., &Olson, C X (1985). Research note Blue cones contribute to border distinctnessVision Research,25, 1349–1352.
Bregman, A. S. (1981). Asking the “what for” question in auditory perception. In M Kubovy & J. R Pomerantz (Eds),Perceptual organization (pp.99–118) Hillsdale, NJ Erlbaum
Bregman, A. S. (1990)Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press
Breitmeyer, B., &Ganz, L. (1976) Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing.Psychological Review,83, 1–36.
Brown, J M., &Weisstein, N (1988a) A phantom context effect. Visual phantoms enhance target visibility.Perception & Psychophysics,43, 53–56.
Brown, J. M, &Weisstein, N (1988b). A spatial frequency effect on perceived depth.Perception & Psychophysics,44, 157–166
Buckley, D., Frisby, J. P., &Mayhew, J. E. W. (1989). Integration of stereo and texture cues in the formation of discontinuities during three dimensional surface interpolation.Perception,18, 563–588
Carpenter, G A, &Grossberg, S (1987a). ART 2: Stable self-organization of pattern recognition codes for analog input patterns.Applied Optics,26, 4919–4930
Carpenter, G A., &Grossberg, S. (1987b). A massively parallel architecture for a self-organizing neural pattern recognition machine.Computer Vision, Graphics, & Image Processing,37, 54–115
Carpenter, G A., &Grossberg, S. (1988), The ART of adaptive pattern recognition by a self-organizing neural network.Computer,21, 77–88.
Carpenter.G A., &Grossberg, S (Eds.) (1991)Pattern recognition by self-organizing neural networks, Cambridge, MA: MIT Press.
Carpenter, G. A., &Grossberg, S (1993). Normal and amnesic learning, recognition, and memory by a neural model of cortico-hippocampal interactionsTrends in Neurosciences,16, 131–137.
Carpenter, G A, Grossberg, S, &Lesher, G W (1992)A what-and-where neural network for invariant image processing (Tech Rep No. CAS/CNS-TR-92-006) Boston Boston University [Proceedings of the International Joint Conference on Neural Networks (Vol 3, pp. 303–308) Piscataway, NJ IEEE Service Center]
Carpenter, G A, Grossberg, S., & Lesher, G W (1993)The what-and-where filter A neural network for spatial mapping, object recognition, and image understanding. Manuscript submitted for publication
Carpenter, G. A, Grossberg, S, &Mehanian, C (1989) Invariant recognition of cluttered scenes by a self-organizing ART architecture: CORT-X boundary segmentation.Neural Networks,2, 169–181
Carpenter, G A, Grossberg, S., &Reynolds, J. H. (1991) ART-MAP Supervised real-time learning and classification of nonstationary data by a self-organizing neural network Neural Networks, 4, 565–588 Reprinted in G A Carpenter & S. Grossberg (Eds,),Pattern recognition by self-organizing neural networks (pp 503–544) Cambridge, MA: MIT Press, 1991
Cavanagh, P, &Favreau, O E. (1985) Color and luminance share a common motion pathwayVision Research,25, 1595–1601.
Christ, R E (1975) Review and analysis of color coding research for visual displays.Human Factors,17, 562–570
Cohen.A, &Ivry, R. B (1991). Density effects in conjunctive search-Evidence for a coarse location mechanism of feature integrationJournal of Experimental Psychology, Human Perception & Performance,17, 891–901.
Cohen, M A, &Grossberg, S. (1984). Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance.Perception & Psychophysics,36, 428–456.
Cohen, M. A., &Grossberg, S (1986). Neural dynamics of speech and language coding Developmental programs, perceptual grouping, and competition for short term memory.Human Neurobiology,5, 1–22.
Cohen, M A., &Grossberg, S (1987). Masking fields: A massively parallel neural architecture for learning, recognizing, and predicting multiple groupings of patterned dataApplied Optics,26, 1866–1891.
Collett, T. S. (1985). Extrapolating and interpolating surfaces in depth.Proceedings of the Royal Society of London (B),244, 43–56.
Coltheart, M (1980) Iconic memory and visible persistence.Perception & Psychophysics,27, 183–228.
Crick, F, &Koch, C (1990). Some reflections on visual awarenessCold Spring Harbor Symposium on Quantitative Biology,55, 953–962
Cruthirds, D R, Gove, A, Grossberg, S, &Mingolla, E. (1991). Preattentive texture segmentation and grouping by the boundary contour system. InProceedings of the International Joint Conference on Neural Networks (Vol. 1. pp 655–660). Piscataway, NJ IEEE Service Center
Cruthirds, D. R., Gove, A, Grossberg, S., Mingolla E., Nowak, N, &Williamson, J. (1992). Processing of synthetic aperture radar images by the boundary contour system and feature contour system. InProceedings of the International Joint Conference on Neural Networks (Vol. 4, pp. 414–419). Piscataway, NJ: IEEE Service Center.
Cruthirds, D. R., Grossberg, S., &Mingolla, E. (1993) Emergent groupings and texture segregation InvestigativeOphthalmology & Visual Science,34, 1237
Daniel, P. M, &Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeysJournal of Physiology,159, 203–221.
Davidoff, J B. (1991)Cognition through color, Cambridge, MA: MIT Press.
Davidoff, J. B., &Donnelly, N (1990). Object superiority. A comparison of complete and part probes.Acta Psychologica,73, 225–243
Desimone, R. (1991). Face-selective cells in the temporal cortex of monkeysJournal of Cognitive Neuroscience,3, 1–8
Desimone, R. (1992). Neural circuits for visual attention in the primate brain. In G A. Carpenter & S. Grossberg (Eds.),Neural networks for vision and image processing (pp 343–364) Cambridge, MA MIT Press
Desimone, R., Schein, S. J., Moran, J., &Ungerleider, L. G. (1985). Contour, color, and shape analysis beyond the striate cortex.Vision Research,25, 441–452.
Desimone, R., &Ungfrleider, L G. (1989). Neural mechanisms of visual processing in monkeys. In F. Boller & J. Grafman (Eds.),Handbook of neuropsychology (Vol. 2, pp. 267–299). Amsterdam: Elsevier Publishing.
DeValois, R. L., Albrecht, D. G, &Thorell, L. G (1982). Spatial frequency selectivity of cells in macaque visual cortex.Vision Research,22, 545–559
DeYoe, E. A, &Van Essen, D. C (1988). Concurrent preceding streams in monkey visual cortex.Trends in Neurosciences,11, 219–226
Dresp, B., Lorenceau, S., &Bonnet, C. (1990) Apparent brightness enhancement in the Kanizsa square with and without illusory contour formationPerception,19, 483–489.
Duncan, J (1984). Selective attention and the organization of visual informationJournal of Experimental Psychology, General,113, 501–517
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W, Munk, M, &Reitboeck, H. J. (1988). Coherent oscillations: A mechanism of feature linking in the visual cortex?Biological Cybernetics60, 121–130.
Eckhorn, K., &Schanze, T. (1991). Possible neural mechanisms of feature linking in the visual system: Stimulus-locked and stimulus-induced synchronizations In A. Babloyantz (Ed.).Self-organization, emerging properties, and learning (pp. 63–80). New York; Plenum Press.
Egeth, H. E., Virzi, R. A, &Garbart, H. (1984), Searching for conjunctively defined targets.Journal of Experimental Psychology, Human Perception & Psychophysics,25, 319–327
Ellias, S, &Grossberg, S. (1975) Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks.Biological Cybernetics,20, 69–98.
Emmert, E (1881). Grössenverhaltnisse der Nachbilder.Klinische Monatsblätter für Augenheilkunde,19, 443–450
Enns, J T., &Rensink, R. A (1990). Influence of scene-based properties on visual search.Science,247, 721–723.
Eriksen, C W., &Murphy, T D. (1987). Movement of attentional focus across the visual field: A critical look at the evidencePerception & Psychophysics,42, 299–305.
Eskew, R T., Jr. (1989). The gap effect revisited: Slow changes in chromatic sensitivity as affected by luminance and chromatic borders,Vision Research,29, 717–729.
Eskew, R. T, Jr.,Stromeyer, C F., III,Picotte, C. J., &Kronauer, R E. (1991). Detection uncertainty and the facilitation of chromatic detection by luminance contoursJournal of the Optical Society of America A,8, 394–403.
Ferraro, M, &Foster, D. H (1986). Discrete and continuous modes of curved-line discrunination controlled by effective stimulus durationSpatial Vision,1, 219–230
Field, D. J., Hayes, A, &Hess, R F. (1993) Contour integration by the human visual system: Evidence for a local “association field.”Vision Research,33, 173–193
Fischer, B (1973). Overlap of receptive Field centers and representation of the visual field in the cat’s optic tract.Vision Research,13, 2113–2120
Fischer, B. (1986). The role of attention in the preparation of visually guided eye movements in monkey and man.Psychological Research,48, 251–257.
Fischer, B, &Breitmeyer, B (1987) Mechanisms of visual attention revealed by saccadic eye movementNeuropsychologia,25, 73–83.
Foley, J. M. (1980). Binocular distance perceptionPsychological Review,87, 411–434
Foster, K. H., Gaska, J. P., Nagler, M., &Pollen, D. A. (1985). Spatial and temporal frequency selectivity of neurons in visual cortical areas V1 and V2 of the macaque monkeyJournal of Physiology,365, 331–363.
Francis, G, Grossberg, S., & Mingolla, E (in press). Cortical dynamics of feature binding and reset: Control of visual persistence.Vision Research.
Freeman, R. D., &Ohzawa, I. (1990). On the neurophysiological organization of biological vision.Vision Research,30, 1661–1676
Gibson, J J. (1950)Perception of the visual world. Boston: Houghton Mifflin.
Gillam, B, &Borsting, E. (1988). The role of monocular regions in stereoscopic displays.Perception,17, 603–608
Ginsburg, A. P. (1982) On the filter approach to understanding the perception of visual form. In D. G. Albrecht (Ed),Recognition of pattern and form (pp, 215–262). Hillsdale, NJ: Erlbaum
Glass, L., &Switkes, E. (1976). Pattern recognition in humans: Correlations which cannot be perceived.Perception,5, 67–72.
Gochin, P (1990). Pattern recognition in primate temporal cortex. But is it ART? InProceedings of the International Joint Conference on Neural Networks (Vol. 1, pp. 77–80). Hillsdale, NJ: Erlbaum.
Gochin, P. M., Miller, E. K., Gross, C. G, &Gerstein, G. L. (1991). Functional interactions among neurons in inferior temporal cortex of the awake macaque.Experimental Brain Research,84, 505–516.
Gogel, W. C. (1956). The tendency to see objects as equidistant and its reverse relations to lateral separation. Psychological Monograph, 70(Whole No. 411).
Gogel, W. C. (1965). Equidistance tendency and its consequences.Psychological Bulletin,64, 153–163.
Gogel, W. C. (1970). The adjacency principle and three-dimensional visual illusions.Psychonomic Monograph Supplement,3(Whole No 45), 153–169.
Goodale, M. A., &Milner, D (1992) Separate visual pathways for perception and action.Trends in Neurosciences,15, 20–25.
Graham, N., Beck, J., &Sutter, A. (1992). Nonlinear processes in spatial-frequency channel models of perceived texture segregation.Effects of sign and amount of contrast. Vision Research,32, 719–743
Gray, C. M., Konig, P, Engel, A. K., &Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus propertiesNature,338, 334–337.
Gray, C. M, &Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.Proceedings of the National Academy of Sciences,86, 1698–1702.
Greve, D., Grossberg, S., Guenther, F., &Bullock, D. (1993) Neural representations for sensory-motor control I. Head-centered 3-D target positions from opponent eye commands.Acta Psychologica,82, 115–138.
Griffiths, A. F., &Chubb, C. (1993). Integration of information across spatial frequency channels in detection of contrast boundaries.Investigative Ophthalmology & Visual Science,34, 1289.
Grossberg, S (1972) Neural expectation: Cerebellar and retinal analogs of cells fired by learnable or unlearned pattern classesKybernetik,10, 49–57.
Grossberg, S. (1973). Contour enhancement, short-term memory and constancies in reverberating neural networks.Studies in Applied Mathematics,52, 217–257.
Grossberg, S. (1976a). Adaptive pattern classification and universal recoding, I Parallel development and coding of neural feature detectors.Biological Cybernetics,23, 121–134.
Grossberg, S. (1976b). On the development of feature detectors in the visual cortex with applications to learning and reaction-diffusion systems.Biological Cybernetics,21, 145–159.
Grossberg, S. (1978a). A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In R. Rosen & F Snell (Eds.),Progress in theoretical biology (Vol. 5, pp. 233–374). New York Academic Press.
Grossberg, S (1978b) A theory of visual coding, memory, and development. In E. Leeuwenberg & H Buffart (Eds.),Formal theories of visual perception (pp. 7–26). New York: Wiley
Grossberg, S (1980). How does a brain build a cognitive code?Psychological Review,87, 1–51.
Grossberg, S. (1982a). Processing of expected and unexpected events during conditioning and attention A psychophysiological theory.Psychological Review,89, 529–572.
Grossberg, S. (1982b)Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control Boston: Reidel Press.
Grossberg, S. (1983). The quantized geometry of visual space: The coherent computation of depth, form, and lightness.Behavioral & Brain Sciences,6, 625–657.
Grossberg, S. (1984). Outline of a theory of brightness, color, and form perception. In E. Degreef & J. van Buggenhaut (Eds.),Trends in mathematical psychology (pp. 5559–5586). Amsterdam: Elsevier/North-Holland.
Grossberg, S. (1987a). Competitive learning: From interactive activation to adaptive resonance.Cognitive Science,11, 23–63.
Grossberg, S. (1987b). Cortical dynamics of three-dimensional form, color, and brightness perception: I. Monocular theory.Perception & Psychophysics,41, 87–116.
Grossberg, S. (1987c). Cortical dynamics of three-dimensional form, color, and brightness perception: II. Binocular theory.Perception & Psychophysics,41, 117–158.
Grossberg, S. (Ed.) (1988).Neural networks and natural intelligence. Cambridge, MA: MIT Press.
Grossberg, S. (1990). A model cortical architecture for the preattentive perception of 3-D form. In E. L. Schwartz (Ed),Computational neuroscience (pp. 117–138). Cambridge, MA: MIT Press.
Grossberg, S. (1991). Why do parallel cortical systems exist for the perception of static form and moving form?Perception & Psychophysics,49, 117–141.
Grossberg, S. (1993).Boundary, brightness, and depth interactions during preattentive representation and attentive recognition of figure and ground (Tech. Rep. No. CAS/CNS-TR-93-003). Boston: Boston University. (Italian Journal of Psychology, in press.)
Grossberg, S. (in press). Neural dynamics of motion perception, recognition learning, and spatial attention. In R. F. Port & T. van Gelder (Eds.),Mind as motion: Dynamics, behavior, and cognition. Cambridge, MA: MIT Press.
Grossberg, S., &Kuperstein, M. (1986).Neural dynamics of adaptive sensory-motor control: Ballistic eye movements. Amsterdam: Elsevier/North-Holland.
Grossberg, S., &Kuperstein, M. (1989).Neural dynamics of sensory-motor control, Expanded edition. Elmsford, NY: Pergamon Press.
Grossberg, S., &Marshall, J. (1989). Stereo boundary fusion by cortical complex cells: A system of maps, filters, and feedback networks for multiplexing distributed data.Neural Networks,2, 29–51.
Grossberg, S., &Mingolla, E. (1985a). Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading.Psychological Review,92, 173–211.
Grossberg, S., &Mingolla, E. (1985b). Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations.Perception & Psychophysics,38, 141–171.
Grossberg, S., &Mingolla, E. (1987a). Neural dynamics of surface perception: Boundary webs, illuminants, and shape-from-shading.Computer Vision, Graphics, & Image Processing,37, 116–165.
Grossberg, S., &Mingolla, E. (1987b). A neural network architecture for preattentive vision: Multiple scale segmentation and regularization. In M. Caudill & C. Butler (Eds.),Proceedings of the First International Conference on Neural Networks (Vol. 4, pp. 177–184). Piscataway, NJ: IEEE Service Center.
Grossberg, S., &Mingolla, E. (1992). Neural dynamics of visual motion perception: Local detection and global grouping. In G. A. Carpenter & S. Grossberg (Eds.),Neural networks for vision and image processing (pp. 293–342). Cambridge, MA: MIT Press.
Grossberg, S., &Mingolla, E. (1993). Neural dynamics of motion perception: Direction fields, apertures, and resonant grouping.Perception & Psychophysics,53, 243–278.
Grossberg, S., Mingolla, E., &Ross, W. D. (1993a).A neural theory of attentive visual search: Interactions of visual, spatial, and object representations (Tech. Rep. No. CAS/CNS-TR-93-038). Boston: Boston University.
Grossberg, S., Mingolla, E., &Ross, W. D. (1993b).A neural theory of visual search: Recursive attention to segmentations and surfaces (Tech. Rep. No. CAS/CNS-TR-93-023). Boston: Boston University. (In Proceedings of the World Congress on Neural Networks. Hillsdale, NJ: Erlbaum, in press.)
Grossberg, S., Mingolla, E., &Todorović, D. (1989). A neural network architecture for preattentive vision.IEEE Transactions on Biomedical Engineering,36, 65–84.
Grossberg, S., &Rudd, M. (1989). A neural architecture for visual motion perception: Group and element apparent motion.Neural Networks,2, 421–450.
Grossberg, S., &Rudd, M. (1992). Cortical dynamics of visual motion perception: Short-range and long-range apparent motion.Psychological Review,99, 78–121.
Grossberg, S., &Somers, D. (1991). Synchronized oscillations during cooperative feature linking in a cortical model of visual perception.Neural Networks,4, 453–466.
Grossberg, S., &Somers, D. (1992). Synchronized oscillations for binding spatially distributed feature codes into coherent spatial patterns. In G. A. Carpenter & S. Grossberg (Eds.),Neural networks for vision and image processing (pp. 385–405). Cambridge, MA: MIT Press.
Grossberg, S., &Stone, G. (1986). Neural dynamics of word recognition and recall: Attentional priming, learning, and resonance.Psychological Review,93, 46–74.
Grossberg, S., &Todorović, D. (1988). Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena.Perception & Psychophysics,43, 241–277.
Grossberg, S., &Wyse, L. (1991). Invariant recognition of cluttered scenes by a self-organizing ART architecture: Figure-ground separation.Neural Networks,4, 723–742.
Grossberg, S., &Wyse, L. (1992). Figure-ground separation of connected scenic figures: Boundaries, filling-in, and opponent processing. In G. A. Carpenter & S. Grossberg,Neural networks for vision and image processing (pp. 161–194). Cambridge, MA: MIT Press.
Harries, M. H., &Perrett, D. I. (1991). Visual processing of faces in temporal cortex: Physiological evidence for a modular organization and possible anatomical correlates.Journal of Cognitive Neuroscience,3, 9–24.
He, Z. J., &Nakayama, K. (1992). Surface features in visual search.Nature,359, 231–233.
Helmholtz, H. L. F. Von (1962).Treatise on physiological optics (J. P. C. Southall, Trans.). New York: Dover.
Homa, D., Haver, B., &Schwartz, T. (1976). Perceptibility of schematic face stimuli: Evidence for a perceptual gestalt.Memory & Cognition,4, 176–185.
Hubel, D. H., &Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat.Journal of Neurophysiology,28, 229–289.
Hubel, D. H., &Wiesel, T. N. (1977), Functional architecture of macaque monkey visual cortex.Proceedings of the Royal Society of London (B),198, 1–59.
Hubel, D. H., &Wiesel, T. N. (1979). Brain mechanisms of vision.Scientific American,241, 150–163.
Humphreys, G. W., Quinlan, P. T., &Riddoch, N. J. (1989). Grouping processes in visual search: Effects with single- and combined-feature targets.Journal of Experimental Psychology: General,118, 258–279.
Intraub, H. (1985). Visual dissociation: An illusory conjunction of pictures and forms.Journal of Experimental Psychology: Human Perception & Performance,11, 431–442.
Julesz, B. (1971).Foundations of cyclopean perception. Chicago: University of Chicago Press.
Julesz, B. (1978). Perceptual limits of texture discrimination and their implications for figure-ground separation. In E. Leeuwenberg (Ed.),Formal theories of visual perception (pp. 205–216). New York: Wiley.
Julesz, B., &Schumer, R. A. (1981). Early visual perception.Annual Review of Psychology,32, 572–627.
Kanizsa, G. (1979).Organization in vision: Essays in Gestalt perception. New York: Praeger Press.
Kaufman, L. (1974).Sight and mind: An introduction to visual perception. New York: Oxford University Press.
Kawabata, N. (1984). Perception at the blind spot and similarity grouping.Perception & Psychophysics,36, 151–158.
Kaye, M. (1978). Stereopsis without binocular correlation.Vision Research,18, 1013–1022.
Kellman, P. J., &Shipley, T. F. (1991). A theory of visual interpolation in object perception.Cognitive Psychology,23, 141–221.
Klein, S., &Stromeyer, C. F., III (1980). On inhibition between spatial frequency channels Adaptation to complex gratingsVision Research,20, 459–466bl]References
Klymenko, V, &Weisstfin, N (1986). Spatial frequency differences can determine figure-ground organizationJournal of Experimental Psychology: Human Perception & Performance,12, 324–330
Kohonen, T (1982). A simple paradigm for the self-organized formation of structured feature maps In S. Amari & M. A Arbib (Eds.).Competition and cooperation in neural networks (pp. 248–266). New York: Springer-Verlag.
Kohonen, T (1984)Self-organization and associative memory. New York: Springer-Verlag.
Kolers, P A. (1972)Aspects of motion perception Oxford, U.K.: Pergamon Press.
Kulikowski, J. J. (1978). Limit of single vision in stereopsis depends on contour sharpness.Nature,275, 126–127.
Kwak, H.-W., Dagenbach, D., &Egeth, H. (1991) Further evidence for a time-independent shift of the focus of attention.Perception & Psychophysical49, 473–480.
LaBerge, D. A, Brown, V. (1989). Theory of attentional operations in shape identificationPsychological Review,96, 101–124
Lawson, R B., &Gulick, W. L (1967). Stereopsis and anomalous contourVision Research,1, 271–297.
Lehar, S., Howells, T., &Smotroff, I. (1990). Application of Gross-berg and Mingolla neural vision model to satellite weather imagery. InProceedings of the International Neural Network Conference (Vol. 2, pp 805–808) Boston Kluwer Press
Lehar, S., Worth, A. J., &Kennedy, D N (1990). Application of the boundary contour/feature contour system to magnetic resonance brain scan imagery. In Proceedings of the International Joint Conference on Neural Networks (Vol. 1, pp 435–440). Piscataway, NJ: IEEE Service Center.
Lenneberg, E. H. (1967)Biological foundations of language. New York: Wiley
Lesher, G W., &Mingolla, E. (1993) The role of edges and line-ends in illusory contour formation.Vision Research,33, 2253–2270.
Levi, D M, Klein, S. A., &Aitsebaomo, A. P. (1985). Vernier acuity, crowding, and cortical magnification.Vision Research,25, 963–977.
Linsker, R (1986a). From basic network principles to neural architecture: Emergence of spatial-opponent cells.Proceedings of the National Academy of Sciences,83, 7508–7512.
Linsker, R. (1986b). From basic network principles to neural architecture: Emergence of orientation selective cells.Proceedings of the National Academy of Sciences,83, 8390–8394.
Linsker, R (1986c) From basic network principles to neural architecture: Emergence of orientation columns.Proceedings of the National Academy of Sciences,83, 8779–8783.
Livingstone, M. S., &Hubel, D. H (1984). Anatomy and physiology of a color system in the primate visual cortexJournal of Neuroscience,4, 309–356.
Livingstone, M S, &Hubel, D H (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth.Journal of Neuroscience,7, 3416–3648.
Livingstone, M. S, &Hubel, D. H. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception.Science,240, 740–749.
Logothetis, N. K., Schiller, P. H, Charles, E. R. A, Hurlbert, A C (1990) Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance.Science,247, 214–217
Marr, D., &Poggio, T. (1979) A computational theory of human stereo visionProceedings of the Royal Society of London (B),204, 301–328.
Marshall, J. (1990). Self-organizing neural networks for perception of visual motionNeural Networks,3, 45–74.
Maylor, E A, &Hockey, R. (1985) Inhibitory components of externally controlled covert orienting in visual space.Journal of Experimental Psychology: Human Perception & Performance,11, 777–787.
McLean, J. P., Broadbent, D. E, &Broadbent, M. H. P. (1983). Combining attributes in rapid serial visual presentation tasksQuarterly Journal of Experimental Psychology,35, 171–186
Metelli, F. (1974a). Achromatic color conditions in the perception of transparency In R B. MacLeod & H L Pick (Eds.),Perception: Essays in honor of J. J. Gibson. Ithaca, NY Cornell University Press.
Metelli, F. (1974b) The perception of transparency.Scientific American,230, 90–98
Metelli, F, DaPos, O., &Cavedon, A. (1985). Balanced and unbalanced, complete and partial transparency.Perception & Psychophysics,38, 354–366
Meyer, G. E., &Dougherty, T. (1987) Effects of flicker-induced depth on chromatic subjective contours.Journal of Experimental Psychology: Human Perception & Performance,13, 353–360
Meyer, G. E, &Ming, C (1988) The visible persistence of illusory contours.Canadian Journal of Psychology,42, 479–488.
Meyer, G. E., &Senecal, M. (1983), The illusion of transparency and chromatic subjective contours.Perception & Psychophysics,34, 58–64.
Mial, R P., Smith, P. C., Doherty, M. E., &Smith, D. W. (1974). The effect of memory color on form identification.Perception & Psychophysics,16, 1–3.
Mikaelian, H. H, Linton, M J., &Phillips, M (1990). Orientation-specific luminance aftereffects.Perception & Psychophysics,47, 575–582.
Miller, E. K., Li, L., &Desimone, R. (1991). A neural mechanism for working and recognition memory in inferior temporal cortex.Science,254, 1377–1379.
Mishkin, M. (1982). A memory system in the monkey PhilosophicalTransactions of the Royal Society of London (B),298, 85–95.
Mishkin, M., &Appenzeller, T (1987). The anatomy of memory.Scientific American,256, 80–89
Mishkin, M., Ungerleider, L. G., &Macko, K A (1983). Object vision and spatial vision: Two cortical pathways.Trends in Neurosciences,6, 414–417.
Mollon, J. D., &Sharpe, L. T (Eds.) (1983).Colour vision. New York: Academic Press.
Mordkoff, J. T., Yantis, S., &Egeth, H. (1990) Detecting conjunctions of color and form in parallel.Perception & Psychophysics,5, 157–168.
Mountcastle, V. B. (1978). Brain mechanisms for directed attention.Journal of the Royal Society of Medicine,71, 14–28
Mountcastle, V. B., Anderson, R. A, &Motter, B. C. (1981). The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex.Journal of Neuroscience,1, 1218–1235.
Mueller, T J., &Blake, R. (1989). A fresh look at the temporal dynamics of binocular rivalry.Biological Cybernetics,61, 223–232.
Nakayama, K., &Shimojo, S. (1988). Depth, rivalry and subjective contours from unpaired monocular points InvestigativeOphthalmology & Visual Science,29(Suppl.), 21.
Nakayama, K., &Shimojo, S. (1990) Da Vinci stereopsis: Depth and subjective occluding contours from unpaired image points.Vision Research,30, 1811–1825.
Nakayama, K., Shimojo, S., &Ramachandran, V. S (1990). Transparency: Relation to depth, subjective contours, luminance, and neon color spreading.Perception,19, 497–513
Nakayama, K., Shimojo, S., &Silverman, G. H. (1989). Stereoscopic depth Its relation to image segmentation, grouping, and the recognition of occluded objects.Perception,18, 55–68.
Nakayama, K. A, Silverman, G. H (1986). Serial and parallel processing of visual feature conjunctionsNature,320, 264–265.
Nisly, S. L., &Wasserman, G S. (1989). Intensity dependence of perceived duration Data, theories, and neural integration.Psychological Bulletin,106, 481–496.
Orban, G. A., Kato, H., &Bishop, P O. (1979) Dimensions and properties of end-zone inhibitory areas in receptive Fields of hyper-complex cells in cat striate cortexJournal of Neurophysiology,42, 833–849.
Ostergaard, A. L, &Davidoff, J. B (1985). Some effects of color on naming and recognition of objects.Journal of Experimental Psychology: Learning, Memory, & Cognition,11, 579–587.
Paradiso, M. A, &Nakayama, K. (1991). Brightness perception and filling-inVision Research,31, 1221–1236.
Pentland, A. P (1985) The focal gradient Optics ecologically salient InvestigativeOphthalmology & Visual Science,26, 243
Perrett, D I., Mistlin, A. J, &Chitty, A. J (1987) Visual cells responsive to facesTrends in Neurosciences,10, 358–364
Peterhans, E, &von der Heydt, R. (1989). Mechanisms of contour perception in monkey visual cortex, II Contours bridging gaps.Journal of Neuroscience,9, 1749–1763
Piccolino, M, Neyton, J, &Gerschenfeld, H M (1984). Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′ 5-monophosphate in horizontal cells of turtle retina.Journal of Neuroscience,4, 2477–2488.
Poggio, G F (1984) Processing of stereoscopic information in monkey visual cortex In G M. Edelman, W E Gall, & W M. Cowan (Eds.),Dynamic aspects of neocortical function (pp. 613–635). New York: Wiley
Poggio, G. F (1989) Neural responses serving stereopsis in the visual cortex of the alert macaque monkey: Position-disparity and image correlation. In J. J. Lund (Ed),Sensory processing in the mammalian brain (pp 226–241). New York Oxford University Press
Poggio, G. F, &Talbot, W. H (1981). Mechanism of static and dynamic stereopsis in foveal cortex of the rhesus monkey.Journal of Physiology,315, 469–492
Pollen, D A, Foster, K. H, &Gaska, J. P (1985). Phase-dependent response characteristics of visual cortical neurons In D Rose & V. G. Dobson (Eds.),Models of the visual cortex (pp. 281–291) New York: Wiley.
Pollen, D. A, &Ronner, S. E (1981). Phase relationships between adjacent simple cells in the visual cortexScience,212, 1409–1411.
Pollen, D. A., &Ronner, S. E (1982) Spatial imputation performed by simple and complex cells in the visual cortex of the catVision Research,22, 101–118.
Posner, M I. (1980). Orienting of attention.Quarterly Journal of Experimental Psychology,32, 2–25.
Price, C J., &Humphreys, G. W. (1989). The effects of surface detail on object categorization and namingQuarterly Journal of Experimental Psychology,41A, 797–827.
Prinzmetal, W. (1990) Neon colors illuminate reading units.Journal of Experimental Psychology: Human Perception & Performance,16, 584–597.
Prinzmetal, W., &Boaz, K. (1989) Functional theory of illusory conjunctions and neon colorsJournal of Experimental Psychology General,118, 165–190.
Pylyshyn, Z. W., &Storm, R W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism.Spatial Vision,3, 179–197.
Quinn, P C. (1985) Suprathreshold contrast perception as a function of spatial frequency.Perception & Psychophysics,38, 408–414.
Ramachandran, V. S. (1992). Perception A biological perspective In G. A. Carpenter & S. Grossberg (Eds),Neural networks for vision and image processing (pp 45–92). Cambridge, MA: MIT Press.
Ramachandran, V. S, &Nelson, J I. (1976). Global grouping overrides point-to-point disparities.Perception,5, 125–128.
Redies, C., &Spillmann, L. (1981) The neon color effect in the Ehrenstein illusion.Perception,10, 667–681.
Regan, D, Erkelens, C J., &Collewijn, H. (1986). Visual field defects for vergence eye movements and for stercomotion perception.Investigative Ophthalmology & Visual Science,27, 806–819.
Remington, R, &Pierce, L. (1984) Moving attention: Evidence for time-invariant shifts of visual selective attention.Perception & Psychophysics,35, 393–399.
Richards, W. A, &Kaye, M. G. (1974). Local versus global stereopsis Two mechanisms.Vision Research,14, 1345–1347
Richards, W A., &Regan, D (1973). A stereofield map with implications for disparity processing.Investigative Ophthalmology,12, 904–909.
Riches, I. P, Wilson, F A W., &Brown, M W (1991) The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyms and inferior temporal cortex of the primate.Journal of Neuroscience,11, 1763–1779
Rizzolatti, G, Riggio, L, Dascola, I, &Umiltà, C (1987) Reorienting attention across the horizontal and vertical meridiansNeuropsychologia,25, 31–40.
Robinson, D L., &Petersen, S. E (1992). The pulvinar and visual salienceTrends in Neurosciences,15, 127–132.
Rock, I (1984)Perception. New York W H Freeman
Rosch, E. (1975). The nature of mental codes for color categories.Journal of Experimental Psychology: Human Perception & Performance,1, 303–322
Ross, W D, Grossberg, S, &Mingolla, E. (1993) A neural model of visual search.Investigative Ophthalmology & Visual Science,34, 1235
Rubin, E (1921) Visuell wahrgenomenne Figuren Copenhagen: Gyldendalske Rubin, E (1958) Figure and ground. In D. C Beardslee & M. Wertheimer (Eds),Readings in perception (pp. 194–203). New York: Van Nostrand.
Rumelhari, D E, &Zipser, D. (1985). Feature discovery by competitive learning.Cognitive Science,9, 75–112
Sagi, D., &Hochstein, S (1984). The contrast dependence of spatial frequency channel interactions.Vision Research,24, 1357–1365
Schiller, P. H, &Lee, K. (1991) The role of the primate extrastriate area V4 in vision.Science,251, 1251–1253.
Schor, C. M, &Tyler, C. W (1981). Spatio-temporal properties of Panum’s fusional area.Vision Research,21, 683–692.
Schor, C M, &Wood, I. (1983) Disparity range for local stereopsis as a function of luminance spatial frequency.Vision Research,23, 1649–1654
Schor, C M, Wood, I, &Ogawa, J. (1984). Binocular sensory fusion is limited by spatial resolution.Vision Research,24, 661–665
Schwartz, E L (1984) Spatial mapping and spatial vision in primate striate and inferotemporal cortex. In L. Spillmann & B. R. Wooten (Eds),Sensory experience, adaptation and perception (pp. 73–104). Hillsdale, NJ Erlbaum.
Schwartz, E L., Desimone, R., Albright, T., &Gross, C G. (1983). Shape recognition and inferior temporal neurons.Proceedings of the National Academy of Sciences,80, 576–578.
Shipley, T. F., &.Kellman, P. J (1992). Perception of partly occluded objects and illusory figures Evidence for an identity hypothesis.Journal of Experimental Psychology: Human Perception & Performance,18, 106–120
Sillito, A. M. (1974). Modification of the receptive field properties of neurons in the visual cortex by bicuculline, a GAB A antagonist.Journal of Physiology,239, 36P-37P.
Sillito, A. M. (1975a). The contribution of inhibitory mechanisms to the receptive field properties of neurons in the striate cortex of the catJournal of Physiology,250, 305–329
Sillito, A. M. (1975b) The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat’s striate cortexJournal of Physiology,250, 287–304.
Sillito, A M. (1977). Inhibitory processes underlying the directional specificity of simple, complex, and hypercomplex cells in the cat’s visual cortex.Journal of Physiology,271, 699–720.
Sillito, A. M. (1979). Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels.Journal of Physiology,289, 33–53.
Sillito, A M, Salt, T. E., &Kemp, J. A. (1985) Modulatory and inhibitory processes in the visual cortexVision Research,25, 375–381.
Singer, W (1983). Neuronal activity as a shaping factor in the self-organization of neuron assemblies In E. Basar, H. Flohr, H. Haken, & A. J. Mandell (Eds.),Synergetics of the brain (pp. 89–101). New York Springer-Verlag.
Spitzer, H, Desimone, R., &Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance.Science,240, 338–340
Spitzer, H., &Hochstein, S. (1985) A complex-cell receptive field modelJournal of Neurophysiology,53, 1266–1286
Stefurak, D L., &Boynton, R M. (1986). Independence of memory for categorically different colors and shapes.Perception & Psychophysics,39, 164–174
Sutter À, Beck J, &Graham, N (1989) Contrast and spatial variables in texture segregation: Testing a simple spatial-frequency channel modelPerception & Psychophysics,46, 312–332
Takeichi, H., Shimojo, S, & Watanabe, T (in press). Processing levels of neon flank, illusory contours, and neon color spreading.Perception
Takeichi, H, Watanabe, T., &Shimojo, S. (1992) Illusory occluding contours and surface formation by depth propagationPerception,21, 177–184
Tansley, B. W, &Boynton, R N (1976). A line, not a space, represents visual distinctness of borders formed by different colors.Science,191, 954–957.
Tansley, B. W., &Boynton, R N. (1978) Chromatic border perception The role of the red- and green-sensitivity conesVision Research,18, 683–697
Tansley, B W, Robertson, A. W., &Maughan, K E. (1983) Chromatic and achromatic border perception A two-cone model accounts for supra threshold border distinctness judgments and cortical pattern-evoked response amplitudes to the same stimuli In J D Mollon & L T Sharpe (Eds.).Colour vision (pp. 445–454) New York Academic Press
Tausch, R. (1953). Die beidaugige Raumwahrnehmung—em Prozess auf Grund der Korrespondenz und Disparition von Gestalten anstelle der Korrespondenz oder Disparation einzelner NetzhautelementeZeitschrift fur experimentelle und angewandte Psychologie,1, 394–421.
Thorful, G, DeValois, R. L, &Albrecht, D. G (1984) Spatial mapping of monkey V1 cells with pure color and luminance stimuli.Vision Research,24, 751–769.
Todd, J. T, &Akerstrom, R A. (1987). Perception of three-dimensional form from patterns of optical textureJournal of Experimental Psychology, Human Perception & Performance,13, 242–255.
Tolhurst, D J. (1972) Adaptation to square-wave gratings: Inhibition between spatial frequency channels in the human visual system.Journal of Physiology,226, 231–248
Tootell, R B. H., Silverman, M. S., Switkes, E., &DeValois, R L. (1982) Deoxyglucose analysis of retinotopic organization in primate striate cortex.Science,218, 902–904.
Treisman, A (1982), Perceptual grouping and attention in visual search for features and for objectsJournal of Experimental Psychology: Human Perception & Performance,8, 194–214.
Treisman, A, &Gelade, G. (1980). A feature integration theory of attentionCognitive Psychology,12, 97–136.
Treisman, A, &Sato, S. (1990). Conjunction search revisited.Journal of Experimental Psychology: Human Perception & Performance,16, 459–478.
Treisman, A, &Schmidt, H. (1982). Illusory conjunctions in the perception of objectsCognitive Psychology,14, 107–141.
Treisman, A., &Souther, J. (1985). Search asymmetry A diagnostic for preattentive processing of separable features.Journal of Experimental Psychology General,114, 285–310.
Ts’o, D Y. (1989). The functional organization and connectivity of color processing In D. M.-K. Lam &. C. D. Gilbert (Eds.),Neural mechanisms of visual perception Proceedings of the Retina Research Foundation Symposia (Vol. 2, pp. 87–115) The Woodlands, TX: Portfolio Publishing
Tyler, C W. (1975). Spatial organization of binocular disparity sensitivityVision Research,15, 583–590
Tyler, C. W (1983). Sensory processing of binocular disparity. In C. M. Schor &. K. J. Cuiffreda (Eds),Vergence eye movements (pp. 199–295) Boston Butterworths
Tynan, P., &Sekuler, R. (1975). Moving visual phantom: A new contour completion effect.Science,188, 951–952
Ungerleider, L. G, &Mishkin, M. (1982). Two cortical visual systems: Separation of appearance and location of objects In D L Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds),Analysis of visual behavior (pp 549–586) Cambridge, MA MIT Press
van Allen, E. J., &Kolodzy, P.J. (1987). Application of a boundary contour neural network to illusions and infrared sensor imagery. In M Caudill & C Butler (Eds.),Proceedings of the JEEE First International Conference on Neural Networks (Vol 4, pp 193–197) Piscataway, NJ IEEE Service Center
van Essen, D C, Newsome, W T, &Maunsell, J H. R (1984) The visual representation in striate cortex of macaque monkey Asymmetries, anisotropies, and individual variability.Vision Research,24, 429–448
van Tuijl, H F.J M., &de Weert, C M M (1979). Sensory conditions for the occurrence of the neon spreading illusion.Perception,8, 211–215.
Varin, D. (1971). Fenomini di contrasto e diffusione chromatica nell’ organizzazione spaziale del campo percettivoRivista di Psicologia,65, 101–128
von der Heydt, R, Heitger, F., Rosentholer, L., Peterhans, E, &Kubler, O. (1992) Simulation of cortical contour mechanisms Illusory figures, depth and distortions, superior image segmentation of natural scenes InvestigativeOphthalmology & Visual Science Supplement,33, 1343.
von der Heydt, R., Peterhans, E., &Baumgartner, G (1984). Illusory contours and cortical neuron responses.Science,224, 1260–1262.
von der Malsburg, C. (1973) Self-organization of orientation sensitive cells in the striate cortexKybernetik,14, 85–100.
von Tschermak-Seysenegg, A. (1952).Introduction to physiological optics (P. Boeder, Trans.), Springfield, IL: Thomas
Wallach, H., &Bacon, J. (1976). Two forms of retinal disparityPerception & Psychophysics,19, 375–382.
Wallach, H, &Barton, W. (1975). Adaptation to optically produced curvature of frontal planes.Perception & Psychophysics,18, 21–25.
Wallach, H, &Lindauer, J. (1962). On the definition of retinal disparity.Psychologische Beitrage,6, 521–530.
Watanabe, T, &Cavanagh, P. (1992). Depth capture and transparency of regions bounded by illusory and chromatic contours.Vision Research,32, 527–532.
Watanabe, T., &Sato, T (1989). Effects of luminance contrast on color spreading and illusory contour in the neon color spreading effectPerception & Psychophysics,45, 427–430
Watanabe, T, &Takeichi, H. (1990). The relation between color spreading and illusory contours.Perception & Psychophysics,47, 457–467.
Watt, R. J (1987). Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulusJournal of the Optical Society of America,4, 2006–2021.
Watt, R. J., &Campbell, F. W. (1985). Vernier acuity Interactions between length effects and gaps when orientation cues are eliminated.Spatial Vision,1, 31–38.
Werner, H. (1937) Dynamics in binocular depth perception. Psychological Monograph (Whole No. 218).
Westheimer, G., &Levi, D. M (1987) Depth attraction and repulsion of disparate foveal stimuli.Vision Research,8, 1361–1368.
Wheatstone, C., (1838), On some remarkable, and hitherto unobserved, phenomena of binocular vision.Philosophical Transactions of the Royal Society of London,128, 371–394.
Wilde, K. (1950). Der Punktreiheneffekt und die Rolle der binocularen Querdisparation beim Tiefenshen.Psychologische Forschung,23, 223–262
Willshaw, D. J., &von der Malsburg, C (1976) How patterned neural connections can be set up by self-organizationProceedings of the Royal Society of London (B),194, 431–445
Wilson, H. R., Blake, R., &Halpern, D. L (1991). Coarse spatial scales constrain the range of binocular fusion on fine scales.Journal of the Optical Society of America,8, 229–236.
Wilson, H R., &Richards, W A. (1989). Mechanisms of contour curvature discrimination.Journal of the Optical Society of America,6, 106–115.
Wolfe, J (1992) Effortless texture segmentation and “parallel” visual search are not the same thing.Vision Research,32, 757–763.
Wolfe, J, Cave, K R., &Franzel, S. L. (1989) Guided search An alternative to the feature integration model of visual searchJournal of Experimental Psychology Human Perception & Performance,15, 419–433
Wong, E, &Weisstein, N (1982) A new perceptual context-superiority effect Line segments are more visible against a figure than against a groundScience,218, 587–589
Wong, E, &Weisstein, N (1983). Sharp targets are detected better against a figure and blurred targets are detected better against a back-ground.Journal of Experimental Psychology: Human Perception & Performance.9, 194–202
Worth, A J, Lehar, S, &Kennedy, D. N (1992) A recurrent cooperative/competitive field for segmentation of magnetic resonance brain slices.IEEE Transactions on Knowledge & Data Engineering,4, 156–161
Wurtz, R. H, Goldberg, M. E, & Robinson, D L (1982, June). Brain mechanisms of visual attention Scientific American, pp 124–135
Yang, Y., &Blake, R. (1991) Spatial frequency tuning of human stereopsisVision Research,31, 1177–1189
Yantis, S (1992) Multielement visual tracking: Attention and perceptual organization.Cognitive Psychology,24, 295–340.
Yantis, S., &Johnson, D N (1990) Mechanisms of attentional priority.Journal of Experimental Psychology: Human Perception Performance,16, 812–825
Yantis, S, &Jones, E (1991). Mechanisms of attentional selection: Temporally modulated priority tagsPerception & Psychophysics,50, 166–178.
Yantis, S., &Jonides, J. (1990) Abrupt visual onsets and selective attention: Voluntary versus automatic allocation.Journal of Experimental Psychology Human Perception & Performance,16, 121–134
Zeki, S. (1983a). Colour coding in the cerebral cortex The reaction of cells in monkey visual cortex to wavelengths and coloursNeuroscience,9, 741–766.
Zeki, S. (1983b). Colour coding in the cerebral cortex: The responses of wavelength-selective and colour coded cells in monkey visual cortex to changes in wavelength compositionNeuroscience,9, 767–791
Zeki, S. (1990). Parallelism and functional specialization in human visual cortexCold Spring Harbor Symposia on Quantitative Biology,LV, 651–661
Zeki, S, &Shipp, S (1988) The functional logic of cortical connections.Nature,335, 311–317
Author information
Authors and Affiliations
Additional information
Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175 and AFOSR F49620-92-J-0499), ARPA (AFOSR 90-0083 and ONR N00014-92-J-4015), and the Office of Naval Research (ONR N00014-91-J-4100).
—Accepted by previous editor, Charles W. Eriksen
Rights and permissions
About this article
Cite this article
Grossberg, S. 3-D vision and figure-ground separation by visual cortex. Perception & Psychophysics 55, 48–121 (1994). https://doi.org/10.3758/BF03206880
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.3758/BF03206880