[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Back to articles
Articles
Volume: 32 | Article ID: art00003
Image
Watermarking in Deep Neural Networks via Error Back-propagation
  DOI :  10.2352/ISSN.2470-1173.2020.4.MWSF-022  Published OnlineJanuary 2020
Abstract

Recent advances in deep learning (DL) have led to great success in tasks of computer vision and pattern recognition. Sharing pre-trained DL models has been an important means to promote the rapid progress of research community and development of DL based systems. However, it also raises challenges to model authentication. It is quite necessary to protect the ownership of the DL models to be released. In this paper, we present a digital watermarking technique to deep neural networks (DNNs). We propose to mark a DNN by inserting an independent neural network that allows us to use selective weights for watermarking. The independent neural network is only used in the training phase and watermark verification phase, and will not be released publicly. Experiments have shown that, the performance of marked DNN on its original task will not be degraded significantly. Meantime, the watermark can be successfully embedded and extracted with a low neural network loss even under the common attacks including model fine-tuning and compression, which has shown the superiority and applicability of the proposed work.

Subject Areas :
Views 165
Downloads 52
 articleview.views 165
 articleview.downloads 52
  Cite this article 

Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, Yuwei Yao, "Watermarking in Deep Neural Networks via Error Back-propagationin Proc. IS&T Int’l. Symp. on Electronic Imaging: Media Watermarking, Security, and Forensics,  2020,  pp 22-1 - 22-9,  https://doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-022

 Copy citation
  Copyright statement 
Copyright © Society for Imaging Science and Technology 2020
72010604
Electronic Imaging
2470-1173
Society for Imaging Science and Technology
7003 Kilworth Lane, Springfield, VA 22151 USA