Published online by Cambridge University Press: 01 July 2016
We compare two queueing systems with identical general arrival streams, but different numbers of servers, different waiting room capacities, and stochastically ordered service time distributions. Under appropriate conditions, it is possible to construct two new systems on the same probability space so that the new systems are probabilistically equivalent to the original systems and each sample path of the stochastic process representing system size in one system lies entirely below the corresponding sample path in the other system. This construction implies stochastic order for these processes and many associated quantities of interest, such as a busy period, the number of customers lost in any interval, and the virtual waiting time.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.