Video Conferencing Evaluation Considering Scalable Video Coding and SDN Network

Authors

  • Francisco Oliveira Universidade Federal de Pernambuco
  • Eduardo Tavares Universidade Federal de Pernambuco
  • Erica Sousa Universidade Federal Rural de Pernambuco
  • Bruno Nogueira Universidade Federal Rural de Pernambuco

DOI:

https://doi.org/10.22456/2175-2745.79310

Keywords:

Availability, Capacity Oriented Availability, Cloud Computing, Analytical modeling

Abstract

Video conferencing is very common nowadays, and it may contemplate heterogenous devices (e.g., smartphones, notebooks, game consoles) and networks in the same session. Developing video conferencing systems for this myriad of devices with different capabilities requires special attention from system designer. Scalable video coding (SVC) is a prominent option to mitigate this heterogeneity issue, but traditional Internet protocol (IP) networks may not fully benefit from such a technology. In contrast, software-defined networking (SDN) may allow better utilization of SVC and improvements on video conferencing components. This paper evaluates the performance of video conferencing systems adopting SVC, SDN and ordinary IP networks, taking into account throughput, delay and peak signal-to-noise ratio (PSNR) as the metrics of interest. The experiments are based on Mininet framework and distinct network infrastructures are also considered. Results indicate SDN with SVC may deliver better video quality with reduced delay and increased throughput.

Downloads

Download data is not yet available.

References

CISCO. The Zettabyte Era: Trends and Analysis. San Jose, CA, USA, 2016.

THOM, G. H.323: the multimedia communications standard for local area networks. IEEE Comm. Mag., v. 34, n. 12, p. 52–56, 1996.

EGILMEZ, H. E. et al. Openqos: An openflow controller design for multimedia delivery with end-to-end quality of

service over software-defined networks. In: KUO, C.-C. J.; NARAYANAN, S.; ORTEGA, A. (Ed.). Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference. Hollywood, California, USA: APSPPAAAC, 2012. v. 1.

KREUTZ, D. et al. Software-defined networking: A comprehensive survey. Proceedings IEEE, v. 103, n. 1, p. 14–76, 2015.

OPEN NETWORKING FOUNDATION. Software- defined networking: The new norm for networks. Menlo Park, CA, USA, 2012.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev., v. 38, n. 2, p. 69–74, 2008.

SCHWARZ, H.; MARPE, D.; WIEGAND, T. Overview of the scalable video coding extension of the h.264/avc standard. IEEE Trans. Circuits Syst. Video Technol, v. 17, n. 9, p. 1103–1120, 2007.

XU, Y. et al. Video telephony for end-consumers: Measurement study of google+, ichat, and skype. In: BYERS, J.; KUROSE, J. (Ed.). Proceedings of the 2012 Internet Measurement Conference. New York, NY, USA: ACM, 2012. (IMC ’12, v. 1).

ZHAO, M.; AL et. Software defined network-enabled multicast for multi-party video conferencing systems. In: SAFAEI, F. (Ed.). 2014 IEEE International Conference on Communications (ICC). Sydney, Australia: IEEE, 2014. (1, v. 1).

YANG, E.-z. et al. A video conferencing system based on sdn-enabled svc multicast. Front Inform Tech El, v. 17, n. 7, p. 672–681, 2016.

MCCANNE, S.; JACOBSON, V.; VETTERLI, M. Receiver-driven layered multicast. SIGCOMM Comput. Commun. Rev., v. 26, n. 4, p. 117–130, 1996.

CASTELLANOS, W. E.; GUERRI, J. C.; ARCE, P. Svceval-ra: an evaluation framework for adaptive scalable video streaming. Multmed. Tools and Applications, v. 76, n. 1, p. 437–461, 2017.

KLAUE, J.; RATHKE, B.; WOLISZ, A. Evalvid - a framework for video transmission and quality evaluation. In: KEMPER, P.; SANDERS, W. H. (Ed.). Computer Performance Evaluation. Modelling Techniques and Tools: 13th International Conference. Urbana, IL, USA: Springer, 2003. v. 13.

DETTI, A.; AL et. Svef: an open-source experimental evaluation framework for h.264 scalable video streaming. In: ELMAGHRABY, A. S. (Ed.). 2009 IEEE Symposium on Computers and Communications. Sousse, Tunisia: IEEE, 2009. (1, v. 1).

ONGARO, F. et al. Enhancing the quality level support for real-time multimedia applications in software-defined networks. In: GERLA, M.; SU, G.-M. (Ed.). 2015 International Conference on Computing, Networking and Communications.

Garden Grove, CA, USA: IEEE, 2015. (1, v. 1).

RODR ́IGUEZ, P. et al. Materialising a new architecture for a distributed mcu in the cloud. Comput. Stand. & Interfaces, v. 44, n. 1, p. 234–242, 2016.

PURI, A.; AL. et. Video coding using the h.264/mpeg-4 avc compression standard. Sig. Proc. Img. Comm., v. 19, n. 9, p. 793–849, 2004.

WIEN, M.; SCHWARZ, H.; OELBAUM, T. Performance analysis of svc. IEEE Trans. Circuits Syst., v. 17, n. 9, p. 1194–1203, 2007.

MONTGOMERY, D. C.; RUNGER, G. C. Applied statistics and probability for engineers. 6. ed. Hoboken, New Jersey, USA: Wiley, 2013. v. 1. (1, v. 1).

PULLANO, V.; AL. et. Psnr evaluation and alignment recovery for mobile satellite video broadcasting. In: CORAZZA, G.; SCALISE, S.; VANELLI-CORALLI, A. (Ed.). Advanced Satellite Multimedia Systems Conference (ASMS). Baiona, Spain: IEEE, 2012. (1, v. 1).

ITU. Methodology for the subjective assessment of the quality of television pictures BT Series Broadcasting service. 2012.

BING, B. Next-Generation Video Coding and Streaming. 1. ed. Hoboken, New Jersey, USA: Wiley, 2015. v. 1. (1, v. 1).

EGILMEZ, H. E.; TEKALP, A. M. Distributed qos architectures for multimedia streaming over software defined networks. IEEE Trans. Multmed., v. 16, n. 6, p. 1597–1609, 2014.

JAKMA, P.; LAMPARTER, D. Introduction to the quagga routing suite. IEEE Netw., v. 28, n. 2, p. 42–48, 2014.

MORITA, K.; YAMAHATA, I. Ryu Network Operating System. Toyko, Japan, 2016.

BOTTA,A.;DAINOTTI,A.;PESCAPE`,A.Atoolfor the generation of realistic network workload for emerging networking scenarios. Comput. Netw., v. 56, n. 15, p. 3531–3547, 2012.

Downloads

Published

2018-07-17

How to Cite

Oliveira, F., Tavares, E., Sousa, E., & Nogueira, B. (2018). Video Conferencing Evaluation Considering Scalable Video Coding and SDN Network. Revista De Informática Teórica E Aplicada, 25(2), 38–46. https://doi.org/10.22456/2175-2745.79310

Issue

Section

Regular Papers