Abstract
This paper demonstrates a writing and reading methodology, which allows both to create and to detect sub-100-nm carboxyl-terminated patterns on light-transmissive quartz substrates by the same instrumental system. Such a technique, capable of creating carboxyl-terminated nanopatterns, offers several benefits for the miniaturization of biochips, since the carboxyl-terminated nanopatterns allow the easy immobilization of biomolecules by amide bond formation. As a consequence, increasingly miniaturized biochips require suitable analytical methods for the detection of nanopatterns. In our approach, carboxyl-terminated nanopatterns of down to 80 nm width were created using a photolabile silane coupling agent and a UV laser coupled to a near-field scanning optical microscope (NSOM). The same NSOM system was then used in a next step to detect the fabricated carboxyl-terminated nanopatterns after modification with a fluorescent label. Furthermore, as a first step towards biochip applications, the successful immobilization of several biomolecules, such as streptavidin, IgG and DNA on carboxyl-terminated nanopatterns was demonstrated. We have shown that our approach has the potential to lead to a new bioanalytical method, which enables one to write and to read biochips on a sub-100-nm scale by the same system.
Similar content being viewed by others
References
S.W. Hell and J. Wichmann, Opt. Lett., 1994, 19, 780.
G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lurmann, R. Jahn, C. Eggeling, and S. W. Hell, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11440.
E. Betzig, G. H. Patterson, R. Sougrat, O. W Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science, 2006, 313, 1642.
M. J. Rust, M. Bates, and X. Zhuang, Nat. Meth., 2006, 3, 793.
R. C. Dunn, Chem. Rev., 1999, 99, 2891.
S. Sun, K. S. L. Chong, and G. J. Leggett, J. Am. Chem. Soc, 2002, 124, 2414.
S. Sun and G. J. Leggett, Nano Lett., 2002, 2, 1223.
S. Sun, M. Montague, K. Critchley, M. S. Chen, W J. Dressick, S. D. Evans, and G. J. Leggett, Nano Lett., 2006, 6, 29.
M. Montague, R. E. Ducker, K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies, and G. J. Leggett, Langmuir, 2007, 23, 7328.
R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, Science, 1999, 283, 661.
H. Zhang, K. B. Lee, Z. Li, and C. A. Mirkin, Nanotechnology, 2003, 14, 1113.
K. B. Lee, E. Y. Kim, C. A. Mirkin, and S. M. Wolinsky, Nano Lett., 2004, 4, 1869.
D. L. Wilson, R. Martin, S. Hong, M. Cronin-Golomb, C. A. Mirkin, and D. L. Kaplan, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 13660.
L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, and C. A. Mirkin, Science, 2002, 296, 1836.
G.-J. Zhang, T. Tanii, T. Funatsu, and I. Ohdomari, Chem. Commun., 2004, 786.
F. A. Denis, A. Pallandre, B. Nysten, A. M. Jonas, and C. C. Dupont-Gillain, Small, 2005, 1, 984.
T. Powell and J. Y. Yoon, Biotechnol. Prog., 2006, 22, 106.
S. Xu and G. Y. Liu, Langmuir, 1997, 13, 127.
K. Wadu-Mesthrige, S. Xu, N. A. Amro, and G. Y. Liu, Langmuir, 1999, 15, 8580.
G. Y. Liu, S. Xu, and Y. Qian, Acc. Chem. Res., 2000, 33, 457.
M. Liu, N. A. Amro, C. S. Chow, and G. Y. Liu, Nano Lett., 2002, 2, 863.
K. Yamaguchi and A. Ozaki, Jpn. Kokai Tokkyo Koho, 2003, JP2003–292496A.
K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, Anal. Chem., 2006, 78, 1904.
A. Ueda, O. Niwa, K. Maruyama, Y. Shindo, K. Oka, and K. Suzuki, Angew. Chem., Int. Ed., 2007, 46, 8238.
T. Saiki and K. Matsuda, Appl. Phys. Lett., 1999, 74, 2773.
K. Yamaguchi, T. Kitabatake, M. Izawa, T. Fujiwara, H. Nishimura, and T. Futami, Chem. Lett., 2000, 228.
C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, Science, 1994, 265, 2071.
N. J. Brewer, B. D. Beake, and G. J. Leggett, Langmuir, 2001, 17, 1970.
N. Hosaka and T. Saiki, Journal of Microscopy-Oxford, 2001, 202, 362.
M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, FEBS Lett., 2004, 573, 6.
F. H. Lei, L. Huang, O. Piot, A. Trussardi, M. Manfait, G. Shang, and M. Troyon, J. Appl. Phys., 2006, 100, 084317.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kobayashi, Y., Sakai, M., Ueda, A. et al. Writing and Reading Methodology for Biochips with Sub-100-nm Chemical Patterns Based on Near-Field Scanning Optical Microscopy. ANAL. SCI. 24, 571–576 (2008). https://doi.org/10.2116/analsci.24.571
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2116/analsci.24.571