Near-linear time medial axis approximation of smooth curves in $\mathbb{R}^3$
DOI:
https://doi.org/10.20382/jocg.v7i1a17Abstract
We present the first algorithm to approximate the medial axis $M_{\gamma}$ of a smooth, closed curve $\gamma \subset \mathbb{R}^3$ in near-linear time. Our algorithm works on a sufficiently dense \eps-sample and comes with a convergence guarantee for the non-discrete, but continuous approximation object.
As our approach also works correctly for a set of curves, we discuss the following application of the medial axis: The medial axis of two curves $\gamma_1$ and $\gamma_2$ can be applied to compute piecewise-linear simplifications of $\gamma_1$ and $\gamma_2$. In particular, a controllable tradeoff between the degree of simplification and the degree of falsification of the summed Fr\'{e}chet distance between $\gamma_1$ and $\gamma_2$ is obtained.
Finally, we show that for simplifying $\gamma_1$ and $\gamma_2$, our approximation, instead of $M_{\gamma}$, can be applied while guaranteeing the same result.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).