[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Computational identification, homology modelling and docking analysis of phytase protein from Fusarium oxysporum

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The extracellular phytase structural gene was isolated from phytopathogenic fungus Fusarium oxysporum using PCR amplification (GenBank accession number KC708486). The gene possesses an open reading frame of 1,514 bp and two coding regions 1–44 and 156–1458 with one intron (45–155). The phy gene from F. oxysporum (Fophy) encodes a putative phytase protein of F. oxysporum (FoPhy) of 448 amino acids, which includes a putative signal peptide (21 residues). The deduced amino acid sequence of FoPhy exhibits 98% sequence identity with Aspergillus niger and Aspergillus awamori phytases. The deduced protein sequence contains the consensus motifs (RHGXRXP and HD), eight conserved cysteine residues and ten conserved putative N-glycosylation sites, which are conserved among histidine acid phosphatases. Computed structural model of FoPhy was found to consist of mixed α/β motifs and probable loops. The predicted model resembles the structure of Aspergillus niger phytase (root mean square deviation 0.23 Å). Ramachandran plot analysis revealed that 95.0% portion of residues fall into the most favourable regions. The predicted three-dimensional structures of FoPhy on molecular docking with substrates like inositol hexaphosphate, inositol hexasulphate and N-acetyl D-glucosamine showed its interaction with conserved histidine and aspartic acid residues in the active site, as also known for other fungal phytases. This study provides a detailed identification and characterization of the phytase from F. oxysporum, which may be helpful in elucidation of its role in pathogenesis and other transcriptional and expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HAPhys:

histidine acid phytases

IHP:

inositol hexaphosphate

IHS:

inositol hexasulphate

NAG:

N-acetyl D-glucosamine

PDB:

Protein data bank

PMDB:

Protein Model Data Base

PDB:

Protein Data Bank

PSM:

phytate specific medium

RMSD:

root mean square deviation

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Arnold K., Bordoli L., Kopp J. & Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22: 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Bae H.D., Yanke L.J., Cheng K.J. & Selinger L.B. 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods 39: 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Betancur M.O., Cervantes L.F.P., Montoya M.M., Yepes M.S. & Sánchez P.A.G. 2012. Isolation and characterization of potential phytase-producing fungi from environmental samples of Antioquia (Colombia). Rev. Fac. Nal. Agr. Medellín 65: 6291–6303.

    Google Scholar 

  • Chatterjee S., Sankaranarayanan R. & Sonti R.V. 2003. PhyA, a secreted protein of Xanthomonas oryzae pv. oryzae, is required for optimum virulence and growth on phytic acid as a sole phosphate source. Mol. Plant-Microbe Int. 16: 973–982.

    Article  CAS  Google Scholar 

  • Colovos C. & Yeates T.O. 1993. Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci. 2: 1511–1519.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engelen A.J., van der Heeft F.C., Randsdorp P.H. & Smit E.L. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77: 760–764.

    CAS  PubMed  Google Scholar 

  • Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D. & Bairoch A. 2005. A protein identification and analysis tools on the ExPASy server, pp. 571–607. In: Walker J.M. (ed.), The Proteomics Protocols Handbook, Humana Press, New York.

    Chapter  Google Scholar 

  • Gerlach W. & Nirenberg H. 1982. The Genus Fusarium — A Pictorial Atlas. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Fortwirtschaft, Vol. 209, Berlin-Dahlem, 406 pp.

  • Gontia I., Tantwai K., Rajput L.P.S. & Tiwari S. 2012. Transgenic plants expressing phytase gene of microbial origin and their prospective application as feed. Food Technol. Biotechnol. 50: 3–10.

    CAS  Google Scholar 

  • Gontia-Mishra I., Deshmukh D., Tripathi N., Tantwai K., Bardiya-Bhurat K. & Tiwari S. 2013. Isolation, morphological and molecular characterization of phytate-hydrolysing fungi by 18S rDNA sequence analysis. Braz. J. Microbiol. 44: 317–323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gontia-Mishra I. & Tiwari S. 2013. Molecular characterization and comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol. Biotechnol. 51: 313–326.

    CAS  Google Scholar 

  • Guex N. & Peitsch M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  • Kistler H.C., Alabouvette C., Baayen R.P., Bentley S., Brayford D., Coddington A., Correll J., Daboussi M.J., Elias K., Fernandez D., Gordon T.R., Katan T., Kim H.G., Leslie J.F., Martyn R.D., Migheli Q., Moore N.Y., O’Donnell K., Ploetz R.C., Rutherford M.A., Summerell B., Waalwijk C. & Woo S. 1998. Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxsysporum. Phytopathology 88: 30–32.

    Article  CAS  PubMed  Google Scholar 

  • Knogge W. 1996. Fungal infections of plants. Plant Cell 8: 1711–1722.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laskowski R.A., Rullmannn J.A., MacArthur M.W., Kaptein R. & Thornton J.M. 1996. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8: 477–486.

    Article  CAS  PubMed  Google Scholar 

  • Lessel U. & Schomburg D. 1994. Similarities between protein 3-D structures. Protein Eng. 7: 1175–1187.

    Article  CAS  PubMed  Google Scholar 

  • Li Y. & Ma F. 2012. Antagonistic mechanism of Fusarium oxysporum of soybean root rot by Bacillus subtilis. Appl. Mech. Materials 108: 127–131.

    Article  Google Scholar 

  • Lovell S.C., Davis I.W., Arendall III W.B., de Bakker P.I.W., Word J.M., Prisant M.G., Richardson J.S. & Richardson D.C. 2002. Structure validation by Cα geometry: phi, psi and Cβ deviation. Proteins Struct. Func. Genet. 50: 437–450.

    Article  Google Scholar 

  • Luthy R., Bowie J.U. & Eisenberg D. 1992. Assessment of protein models with three dimensional profile. Nature 356: 83–85.

    Article  CAS  PubMed  Google Scholar 

  • Marlida Y., Delfita R., Gusmanizar N. & Ciptaan G. 2010. Identi-fication characterization and production of phytase from endophytic fungi. World Acad. Sci. Eng. Technol. 65: 1043–1046.

    Google Scholar 

  • Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K. & Olson A.J. 1998. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem. 19: 1639–1662.

    Article  CAS  Google Scholar 

  • Na S., Huang H., Meng K., Luo H., Wang Y., Yang P. & Yao B. 2008. Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. J. Microbiol. Biotechnol. 18: 1221–1226.

    Google Scholar 

  • Oakley A.J. 2010. The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic. Biochem. Biophys. Res. Commun. 397: 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Pasamontes L., Haiker M., Wyss M., Tessier M. & van Loon A.P. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696–1700.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pokala N. & Handel T.M. 2004. Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation. Protein Sci. 13: 925–936.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ragon M., Hoh F., Aumelas A., Chiche L., Moulin G. & Boze H. 2009. Structure of Debaryomyces castellii CBS 2923 phytase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65: 321–326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao D.E.C.S., Rao K.V., Reddy T.P. & Reddy V.D. 2009. Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit. Rev. Biotechnol. 29: 182–198.

    Article  CAS  PubMed  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ullah A.H.J. & Mullaney E.J. 1996. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem. Biophys. Res. Commun. 227: 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Vats P. & Banerjee U.C. 2004. Production studies and catalytic properties of phytases (myoinositol hexakisphosphate phosphohydrolases): an overview. Enzyme Microb. Technol. 35: 3–14.

    Article  CAS  Google Scholar 

  • Vorobjev Y.N. & Hermans J. 2001. Free energies of protein decoys provide insight into determinants of protein stability. Protein Sci. 10: 2498–2506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X.Y., Meang F.G. & Zhou H.M. 2004. The role of disulfide bonds in the conformational stability and catalytic activity of phytase. Biochem. Cell Biol. 82: 329–334.

    Article  CAS  PubMed  Google Scholar 

  • Wiederstein M. & Sippl M.J. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(Web Server Issue): W407–W410.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang W., Mullaney E.J. & Lei X.G. 2007. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl. Environ. Microbiol. 73: 3069–3076.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuckerkandl E. & Pauling L. 1965. Evolutionary divergence and convergence in proteins, pp. 97–166. In: Bryson V. & Vogel H.J. (eds), Evolving Genes and Proteins. Academic Press, New York.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Tiwari.

Additional information

Based on a contribution presented at the International Conference on Advances in Biotechnology & Bioinformatics (ICABB-2013), November 25–27, 2013, Pune, Maharashtra, India

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontia-Mishra, I., Kumar Singh, V., Tripathi, N. et al. Computational identification, homology modelling and docking analysis of phytase protein from Fusarium oxysporum . Biologia 69, 1283–1294 (2014). https://doi.org/10.2478/s11756-014-0447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0447-8

Key words

Navigation