Abstract
The extracellular phytase structural gene was isolated from phytopathogenic fungus Fusarium oxysporum using PCR amplification (GenBank accession number KC708486). The gene possesses an open reading frame of 1,514 bp and two coding regions 1–44 and 156–1458 with one intron (45–155). The phy gene from F. oxysporum (Fophy) encodes a putative phytase protein of F. oxysporum (FoPhy) of 448 amino acids, which includes a putative signal peptide (21 residues). The deduced amino acid sequence of FoPhy exhibits 98% sequence identity with Aspergillus niger and Aspergillus awamori phytases. The deduced protein sequence contains the consensus motifs (RHGXRXP and HD), eight conserved cysteine residues and ten conserved putative N-glycosylation sites, which are conserved among histidine acid phosphatases. Computed structural model of FoPhy was found to consist of mixed α/β motifs and probable loops. The predicted model resembles the structure of Aspergillus niger phytase (root mean square deviation 0.23 Å). Ramachandran plot analysis revealed that 95.0% portion of residues fall into the most favourable regions. The predicted three-dimensional structures of FoPhy on molecular docking with substrates like inositol hexaphosphate, inositol hexasulphate and N-acetyl D-glucosamine showed its interaction with conserved histidine and aspartic acid residues in the active site, as also known for other fungal phytases. This study provides a detailed identification and characterization of the phytase from F. oxysporum, which may be helpful in elucidation of its role in pathogenesis and other transcriptional and expression studies.
Similar content being viewed by others
Abbreviations
- HAPhys:
-
histidine acid phytases
- IHP:
-
inositol hexaphosphate
- IHS:
-
inositol hexasulphate
- NAG:
-
N-acetyl D-glucosamine
- PDB:
-
Protein data bank
- PMDB:
-
Protein Model Data Base
- PDB:
-
Protein Data Bank
- PSM:
-
phytate specific medium
- RMSD:
-
root mean square deviation
References
Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
Arnold K., Bordoli L., Kopp J. & Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22: 195–201.
Bae H.D., Yanke L.J., Cheng K.J. & Selinger L.B. 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods 39: 17–22.
Betancur M.O., Cervantes L.F.P., Montoya M.M., Yepes M.S. & Sánchez P.A.G. 2012. Isolation and characterization of potential phytase-producing fungi from environmental samples of Antioquia (Colombia). Rev. Fac. Nal. Agr. Medellín 65: 6291–6303.
Chatterjee S., Sankaranarayanan R. & Sonti R.V. 2003. PhyA, a secreted protein of Xanthomonas oryzae pv. oryzae, is required for optimum virulence and growth on phytic acid as a sole phosphate source. Mol. Plant-Microbe Int. 16: 973–982.
Colovos C. & Yeates T.O. 1993. Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci. 2: 1511–1519.
Engelen A.J., van der Heeft F.C., Randsdorp P.H. & Smit E.L. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77: 760–764.
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D. & Bairoch A. 2005. A protein identification and analysis tools on the ExPASy server, pp. 571–607. In: Walker J.M. (ed.), The Proteomics Protocols Handbook, Humana Press, New York.
Gerlach W. & Nirenberg H. 1982. The Genus Fusarium — A Pictorial Atlas. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Fortwirtschaft, Vol. 209, Berlin-Dahlem, 406 pp.
Gontia I., Tantwai K., Rajput L.P.S. & Tiwari S. 2012. Transgenic plants expressing phytase gene of microbial origin and their prospective application as feed. Food Technol. Biotechnol. 50: 3–10.
Gontia-Mishra I., Deshmukh D., Tripathi N., Tantwai K., Bardiya-Bhurat K. & Tiwari S. 2013. Isolation, morphological and molecular characterization of phytate-hydrolysing fungi by 18S rDNA sequence analysis. Braz. J. Microbiol. 44: 317–323.
Gontia-Mishra I. & Tiwari S. 2013. Molecular characterization and comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol. Biotechnol. 51: 313–326.
Guex N. & Peitsch M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.
Kistler H.C., Alabouvette C., Baayen R.P., Bentley S., Brayford D., Coddington A., Correll J., Daboussi M.J., Elias K., Fernandez D., Gordon T.R., Katan T., Kim H.G., Leslie J.F., Martyn R.D., Migheli Q., Moore N.Y., O’Donnell K., Ploetz R.C., Rutherford M.A., Summerell B., Waalwijk C. & Woo S. 1998. Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxsysporum. Phytopathology 88: 30–32.
Knogge W. 1996. Fungal infections of plants. Plant Cell 8: 1711–1722.
Laskowski R.A., Rullmannn J.A., MacArthur M.W., Kaptein R. & Thornton J.M. 1996. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8: 477–486.
Lessel U. & Schomburg D. 1994. Similarities between protein 3-D structures. Protein Eng. 7: 1175–1187.
Li Y. & Ma F. 2012. Antagonistic mechanism of Fusarium oxysporum of soybean root rot by Bacillus subtilis. Appl. Mech. Materials 108: 127–131.
Lovell S.C., Davis I.W., Arendall III W.B., de Bakker P.I.W., Word J.M., Prisant M.G., Richardson J.S. & Richardson D.C. 2002. Structure validation by Cα geometry: phi, psi and Cβ deviation. Proteins Struct. Func. Genet. 50: 437–450.
Luthy R., Bowie J.U. & Eisenberg D. 1992. Assessment of protein models with three dimensional profile. Nature 356: 83–85.
Marlida Y., Delfita R., Gusmanizar N. & Ciptaan G. 2010. Identi-fication characterization and production of phytase from endophytic fungi. World Acad. Sci. Eng. Technol. 65: 1043–1046.
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K. & Olson A.J. 1998. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem. 19: 1639–1662.
Na S., Huang H., Meng K., Luo H., Wang Y., Yang P. & Yao B. 2008. Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. J. Microbiol. Biotechnol. 18: 1221–1226.
Oakley A.J. 2010. The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic. Biochem. Biophys. Res. Commun. 397: 745–749.
Pasamontes L., Haiker M., Wyss M., Tessier M. & van Loon A.P. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696–1700.
Pokala N. & Handel T.M. 2004. Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation. Protein Sci. 13: 925–936.
Ragon M., Hoh F., Aumelas A., Chiche L., Moulin G. & Boze H. 2009. Structure of Debaryomyces castellii CBS 2923 phytase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65: 321–326.
Rao D.E.C.S., Rao K.V., Reddy T.P. & Reddy V.D. 2009. Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit. Rev. Biotechnol. 29: 182–198.
Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.
Ullah A.H.J. & Mullaney E.J. 1996. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem. Biophys. Res. Commun. 227: 311–317.
Vats P. & Banerjee U.C. 2004. Production studies and catalytic properties of phytases (myoinositol hexakisphosphate phosphohydrolases): an overview. Enzyme Microb. Technol. 35: 3–14.
Vorobjev Y.N. & Hermans J. 2001. Free energies of protein decoys provide insight into determinants of protein stability. Protein Sci. 10: 2498–2506.
Wang X.Y., Meang F.G. & Zhou H.M. 2004. The role of disulfide bonds in the conformational stability and catalytic activity of phytase. Biochem. Cell Biol. 82: 329–334.
Wiederstein M. & Sippl M.J. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(Web Server Issue): W407–W410.
Zhang W., Mullaney E.J. & Lei X.G. 2007. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl. Environ. Microbiol. 73: 3069–3076.
Zuckerkandl E. & Pauling L. 1965. Evolutionary divergence and convergence in proteins, pp. 97–166. In: Bryson V. & Vogel H.J. (eds), Evolving Genes and Proteins. Academic Press, New York.
Author information
Authors and Affiliations
Corresponding author
Additional information
Based on a contribution presented at the International Conference on Advances in Biotechnology & Bioinformatics (ICABB-2013), November 25–27, 2013, Pune, Maharashtra, India
Rights and permissions
About this article
Cite this article
Gontia-Mishra, I., Kumar Singh, V., Tripathi, N. et al. Computational identification, homology modelling and docking analysis of phytase protein from Fusarium oxysporum . Biologia 69, 1283–1294 (2014). https://doi.org/10.2478/s11756-014-0447-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11756-014-0447-8