Abstract
Seven samples of the ash derived from biomass, representing both fly and bottom ash, were analysed for a wide spectrum of total and mobile contents of nutrient and potentially risk elements. Several techniques, X-ray fluorescence (XRF) spectrometry, instrumental neutron activation analysis (INAA), proton-induced gamma-ray emission (PIGE) and proton induced X-ray emission (PIXE), inductively coupled plasma-atomic emission spectrometry (ICP-OES), and flame atomic absorption spectrometry (F-AAS) were compared. The results showed fairly good agreement between the XRF and INAA results, where the correlation coefficients (r) varied between 0.96 and 0.98. Lower contents documenting insufficient dissolution of the ash samples in the applied acid mixture were observed for both ICP-OES and AAS. In this case, weaker correlation with the INAA results not exceeding r = 0.7 were obtained. Therefore, the sample decomposition step is a bottleneck of the accurate analysis of this type of materials. For the assessment of plant-available portions of the elements in the ash samples, the Mehlich III extraction procedure and the extraction with a 0.11 mol L−1 solution of CH3COOH were applied. The results showed relatively low mobility of the elements (especially micronutrients) in the ash samples regardless of their source and composition, suggesting limited immediate effect of direct ash application as a fertilizer.
[1] Akatsuki, S., Yamanouchi, R., Nakamoto, Y., Yoshizumi, K., Ogaki, M., Yabutani, T., Hayashi, Y., & Motonaka, J. (2008). Multielemental determination of trace elements in sewage sludge by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Bunseki Kagaku, 57, 659–666. DOI: 10.2116/bunsekikagaku.57.659. http://dx.doi.org/10.2116/bunsekikagaku.57.65910.2116/bunsekikagaku.57.659Search in Google Scholar
[2] Baernthaler, G., Zischka, M., Haraldsson, C., & Obernberger, I. (2006). Determination of major and minor ash-forming elements in solid biofuels. Biomass and Bioenergy, 30, 983–997. DOI: 10.1016/j.biombioe.2006.06.007. http://dx.doi.org/10.1016/j.biombioe.2006.06.00710.1016/j.biombioe.2006.06.007Search in Google Scholar
[3] Bigham, J. M. (Ed.) (1996). Methods of soil analysis, Part 3: Chemical methods. Madison, WI, USA: Soil Science Society of America, Inc., American Society of Agronomy, Inc. Search in Google Scholar
[4] Brennan, D., Coulter, B., Mullen, G., & Courtney, R. (2008). Evaluation of Mehlich 3 for extraction of copper and zinc from Irish grassland soils and for prediction of herbage content. Communications in Soil Science and Plant Analysis, 39, 1943–1962. DOI: 10.1080/00103620802134743. http://dx.doi.org/10.1080/0010362080213474310.1080/00103620802134743Search in Google Scholar
[5] Dahl, O., Nurmesniemi, H., Pöykiö, R., & Watkins, G. (2010). Heavy metal concentrations in bottom ash and fly ash fractions from a large-sized (246 MW) fluidized bed boiler with respect to their Finnish forest fertilizer limit values. Fuel Processing Technology, 91, 1634–1639. DOI: 10.1016/j.fuproc.2010.06.012. http://dx.doi.org/10.1016/j.fuproc.2010.06.01210.1016/j.fuproc.2010.06.012Search in Google Scholar
[6] Djingova, R., Heidenreich, H., Kovacheva, P., & Markert, B. (2003). On the determination of platinum group elements in environmental materials by inductively coupled plasma mass spectrometry and microwave digestion. Analytica Chimica Acta, 489, 245–251. DOI: 10.1016/s0003-2670(03)00716-5. http://dx.doi.org/10.1016/S0003-2670(03)00716-510.1016/S0003-2670(03)00716-5Search in Google Scholar
[7] Górecka, H., Chojnacka, K., & Górecki, H. (2006). The application of ICP-MS and ICP-OES in determination of micronutrients in wood ashes used as soil conditioners. Talanta, 70, 950–956. DOI: 10.1016/j.talanta.2006.05.061. http://dx.doi.org/10.1016/j.talanta.2006.05.06110.1016/j.talanta.2006.05.061Search in Google Scholar
[8] Havránek, V., Hnatowicz, V., Kvítek, J., & Obrusník, I. (1994). Analysis of membrane filters and thick fly ash samples by PIXE. Biological Trace Element Research, 43–45, 185–193. DOI: 10.1007/bf02917315. http://dx.doi.org/10.1007/BF0291731510.1007/BF02917315Search in Google Scholar
[9] Hödrejärv, H., & Vaarmann, A. (1999). Pseudo-total analysis for metallic elements in siliceous soil by acid digestion and flame atomic absorption spectrometry. Analytica Chimica Acta, 396, 293–301. DOI: 10.1016/s0003-2670(99)00480-8. http://dx.doi.org/10.1016/S0003-2670(99)00480-810.1016/S0003-2670(99)00480-8Search in Google Scholar
[10] Hoenig, M. (1995). Critical discussion of trace element analysis of plant matrices. Science of the Total Environment, 176, 85–91. DOI: 10.1016/0048-9697(95)04833-2. http://dx.doi.org/10.1016/0048-9697(95)04833-210.1016/0048-9697(95)04833-2Search in Google Scholar
[11] Jarvis, I., Totland, M.M., & Jarvis, K. E. (1997). Determination of the platinum-group elements in geological materials by ICP-MS using microwave digestion, alkali fusion and cationexchange chromatography. Chemical Geology, 143, 27–42. DOI: 10.1016/s0009-2541(97)00098-3. http://dx.doi.org/10.1016/S0009-2541(97)00098-310.1016/S0009-2541(97)00098-3Search in Google Scholar
[12] Jenkins, B. M., Baxter, L. L., Miles, T. R., Jr., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology, 54, 17–46. DOI: 10.1016/s0378-3820(97)00059-3. http://dx.doi.org/10.1016/S0378-3820(97)00059-310.1016/S0378-3820(97)00059-3Search in Google Scholar
[13] Kubešová, M., & Kučera, J. (2010). Validation of k 0 standardization method in neutron activation analysis—The use of Kayzero for Windows programme at the Nuclear Physics Institute, Řež. Nuclear Instruments and Methods in Physics Research Section A, 622, 403–406. DOI: 10.1016/j.nima.2009.12.079. http://dx.doi.org/10.1016/j.nima.2009.12.07910.1016/j.nima.2009.12.079Search in Google Scholar
[14] Kučera, J., & Soukal, L. (1988). Homogeneity tests and certification analyses of coal fly ash reference materials by instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 121, 245–259. DOI: 10.1007/bf02041411. http://dx.doi.org/10.1007/BF0204141110.1007/BF02041411Search in Google Scholar
[15] Loide, V., Nöges, M., & Rebane, J. (2005). Assessment of the agrochemical properties of the soil using the extraction solution Mehlich 3 in Estonia. Agronomy Research, 3, 73–80. Search in Google Scholar
[16] Mader, P., Száková, J., & Miholová, D. (1998). Classical dry ashing of biological and agricultural materials. Part II. Losses of analytes due to their retention in an insoluble residue. Analusis, 26, 121–129, DOI: 10.1051/analusis:1998121. http://dx.doi.org/10.1051/analusis:199812110.1051/analusis:1998121Search in Google Scholar
[17] Mallarino, A., & Sawyer, J. E. (1999). Interpreting Mehlich-3 soil test results. Integrated Crop Management Newsletter, 482(2), 11–12. Search in Google Scholar
[18] Masson, P. (1999). Matrix effects during trace element analysis in plant samples by inductively coupled plasma atomic emission spectrometry with axial view configuration and pneumatic nebulizer. Spectrochimica Acta Part B, 54, 603–612. DOI: 10.1016/s0584-8547(99)00019-1. http://dx.doi.org/10.1016/S0584-8547(99)00019-110.1016/S0584-8547(99)00019-1Search in Google Scholar
[19] Mateus, R., Jesus, A. P., Fonseca, M., Luís, H., & Ribeiro, J. P. (2007). The sensitivity of the PIGE analytical technique. Nuclear Instruments and Methods in Physics Research Section B, 264, 340–344. DOI: 10.1016/j.nimb.2007.09.030. http://dx.doi.org/10.1016/j.nimb.2007.09.03010.1016/j.nimb.2007.09.030Search in Google Scholar
[20] Meers, E., Du Laing, G., Unamuno, V., Ruttens, A., Vangronsveld, J., Tack, F. M. G., & Verloo, M. G. (2007). Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma, 141, 247–259. DOI: 10.1016/j.geoderma. 2007.06.002. http://dx.doi.org/10.1016/j.geoderma.2007.06.00210.1016/j.geoderma.2007.06.002Search in Google Scholar
[21] Mehlich, A. (1984). Mehlich 3 Soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416. DOI: 10.1080/00103628409367568. http://dx.doi.org/10.1080/0010362840936756810.1080/00103628409367568Search in Google Scholar
[22] Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130. DOI: 10.1016/j.envpol.2006.03.021. http://dx.doi.org/10.1016/j.envpol.2006.03.02110.1016/j.envpol.2006.03.021Search in Google Scholar
[23] Narodoslawsky, M., & Obernberger, I. (1996). From waste to raw material—the route from biomass to wood ash for cadmium and other heavy metals. Journal of Hazardous Materials, 50, 157–168. DOI: 10.1016/0304-3894(96)01785-2. http://dx.doi.org/10.1016/0304-3894(96)01785-210.1016/0304-3894(96)01785-2Search in Google Scholar
[24] Nurmesniemi, H., Pöykiö, R., Perämäki, P., & Kuokkanen, T. (2008). Extractability of trace elements in precipitated calcium carbonate (PCC) waste from an integrated pulp and paper mill complex. Chemosphere, 70, 1161–1167. DOI: 10.1016/j.chemosphere.2007.08.055. http://dx.doi.org/10.1016/j.chemosphere.2007.08.05510.1016/j.chemosphere.2007.08.055Search in Google Scholar
[25] Pettersson, A., Åmand, L. E., & Steenari, B. M. (2008). Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction. Biomass and Bioenergy, 32, 236–244. DOI: 10.1016/j.biombioe.2007.09.006. http://dx.doi.org/10.1016/j.biombioe.2007.09.00610.1016/j.biombioe.2007.09.006Search in Google Scholar
[26] Pitman, R. M. (2006). Wood ash use in forestry — a review of the environmental impacts. Forestry, 79, 563–588. DOI: 10.1093/forestry/cpl041. http://dx.doi.org/10.1093/forestry/cpl04110.1093/forestry/cpl041Search in Google Scholar
[27] Pöykiö, R., Nurmesniemi, H., & Keiski, R. L. (2009). Total and size fractionated concentrations of metals in combustion ash from forest residues and peat. Proceedings of the Estonian Academy of Sciences, 58, 247–254. DOI: 10.3176/proc.2009.4.06. http://dx.doi.org/10.3176/proc.2009.4.0610.3176/proc.2009.4.06Search in Google Scholar
[28] Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455. DOI: 10.1016/s0039-9140(97)00406-2. http://dx.doi.org/10.1016/S0039-9140(97)00406-210.1016/S0039-9140(97)00406-2Search in Google Scholar
[29] Reimann, C., Arnoldussen, A., Boyd, R., Finne, T. E., Koller, F., Nordgulen, Ø., & Englmaier, P. (2007). Element contents in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients. Science of the Total Environment, 377, 416–433. DOI: 10.1016/j.scitotenv.2007.02.011. http://dx.doi.org/10.1016/j.scitotenv.2007.02.01110.1016/j.scitotenv.2007.02.011Search in Google Scholar PubMed
[30] Reimann, C., Ottesen, R. T., Andersson, M., Arnoldussen, A., Koller, F., & Englmaier, P. (2008). Element levels in birch and spruce wood ashes — green energy? Science of the Total Environment, 393, 191–197. DOI: 10.1016/j.scitotenv.2008.01.015. http://dx.doi.org/10.1016/j.scitotenv.2008.01.01510.1016/j.scitotenv.2008.01.015Search in Google Scholar PubMed
[31] Sastre, J., Hernández, E., Rodríguez, R., Alcobé, X., Vidal, M., & Rauret, G. (2004). Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident. Science of the Total Environment, 329, 261–281. DOI: 10.1016/j.scitotenv.2004.03.012. http://dx.doi.org/10.1016/j.scitotenv.2004.03.01210.1016/j.scitotenv.2004.03.012Search in Google Scholar PubMed
[32] Stankova, A., Gilon, N., Dutruch, L., & Kanicky, V. (2010). A simple LIBS method for fast quantitative analysis of fly ashes. Fuel, 89, 3468–3474. DOI: 10.1016/j.fuel.2010.06.018. http://dx.doi.org/10.1016/j.fuel.2010.06.01810.1016/j.fuel.2010.06.018Search in Google Scholar
[33] Terashima, S., Okai, T., & Taniguchi, M. (1998). Alkali fusion / ICP-AES for the determination of boron in geological reference materials and a comparison with spectrophotometry. Bunseki Kagaku, 47, 451–454. DOI: 10.2116/bunsekikagaku.47.451. http://dx.doi.org/10.2116/bunsekikagaku.47.45110.2116/bunsekikagaku.47.451Search in Google Scholar
[34] Totland, M. M., Jarvis, I., & Jarvis, K. E. (1995). Microwave digestion and alkali fusion procedures for the determination of the platinum-group elements and gold in geological materials by ICP-MS. Chemical Geology, 124, 21–36. DOI: 10.1016/0009-2541(95)00021-d. http://dx.doi.org/10.1016/0009-2541(95)00021-D10.1016/0009-2541(95)00021-DSearch in Google Scholar
[35] Xiao, R. R., Chen, X. L., Wang, F. C., & Yu, G. S. (2011). The physicochemical properties of different biomass ashes at different ashing temperature. Renewable Energy, 36, 244–249. DOI: 10.1016/j.renene.2010.06.027. http://dx.doi.org/10.1016/j.renene.2010.06.02710.1016/j.renene.2010.06.027Search in Google Scholar
[36] Yafa, C., & Farmer, J. G. (2006). A comparative study of acidextractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emissions spectrometry. Analytica Chimica Acta, 557, 296–303. DOI: 10.1016/j.aca.2005.10.043. http://dx.doi.org/10.1016/j.aca.2005.10.04310.1016/j.aca.2005.10.043Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences