[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

An extension of an artificial neural network (ANN) approach to solve the magnetotelluric (MT) inverse problem for azimuthally anisotropic resistivities is presented and applied for a real dataset. Three different model classes, containing general 1-D and 2-D azimuthally anisotropic features, have been considered. For each model class, characteristics of three-layer feed forward ANNs trained through an error back propagation algorithm have been adjusted to approximate the inverse modeling function. It appears that, at least for synthetic models, reasonable results would be obtained by applying the amplitudes of the complex impedance tensor elements as inputs. Furthermore, the Levenberg-Marquart algorithm possesses optimal performance as a learning paradigm for this problem.

The evaluation of applicability of the trained ANNs for unknown data sets excluded from the learning procedure reveals that the trained ANNs possess acceptable interpolation and extrapolation abilities to estimate model parameters accurately. This method was also successfully used for a field dataset wherein anisotropy had been previously recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berdichevsky, M.N., and V.I. Dmitriev (2008), Models and Methods of Magnetotellurics, Springer, Berlin Heidelberg.

    Book  Google Scholar 

  • Brasse, H., G. Kapinos, Y. Li, L. Mütschard, W. Soyer, and D. Eydam (2009), Structural electrical anisotropy in the crust at the South-Central Chilean continental margin as inferred from geomagnetic transfer functions, Phys. Earth Planet. In. 173,1–2, 7–16, DOI: 10.1016/j.pepi.2008.10.017.

    Article  Google Scholar 

  • Calderón-Macias, C., M.K. Sen, and P.L. Stoffa (2000), Artificial neural networks for parameter estimation in geophysics, Geophys. Prospect. 48,1, 21–47, DOI: 10.1046/j.1365-2478.2000.00171.x.

    Article  Google Scholar 

  • Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19,90, 297–301, DOI: 10.1090/S0025-5718-1965-0178586-1.

    Article  Google Scholar 

  • Gatzemeier, A., and M. Moorkamp (2005), 3-D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms, Phys. Earth Planet. In. 149,3–4, 225–242, DOI: 10.1016/j.pepi.2004.10.004.

    Article  Google Scholar 

  • Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice-Hall Int., New Jersey, 842 pp.

    Google Scholar 

  • Heise, W., and J. Pous (2001), Effects of anisotropy on the two-dimensional inversion procedure, Geophys. J. Int. 147,3, 610–621, DOI: 10.1046/j.0956-540x.2001.01560.x.

    Article  Google Scholar 

  • Heise, W., and J. Pous (2003), Anomalous phases exceeding 90° in magnetotellurics: anisotropic model studies and a field example, Geophys. J. Int. 155,1, 308–318, DOI: 10.1046/j.1365-246X.2003.02050.x.

    Article  Google Scholar 

  • Heise, W., T.G. Caldwell, H.M. Bibby, and C. Brown (2006), Anisotropy and phase splits in magnetotellurics, Phys. Earth Planet. In. 158,2–4, 107–121, DOI: 10.1016/j.pepi.2006.03.021.

    Article  Google Scholar 

  • Irie, B., and S. Miyake (1988), Capabilities of three-layered perceptrons. In: M. Caudill and C. Butler (eds.), Proc. IEEE Int. Conference on Neural Networks, 24–27 July 1988, San Diego, USA, Vol. 1, SOS Printing, 641–648, DOI: 10.1109/ICNN.1988.23901.

    Google Scholar 

  • Kapinos, G. (2010), Amphibious magnetotellurics at the South-Central Chilean continental margin, Ph.D. Thesis, FU Berlin.

    Google Scholar 

  • Lippmann, R.P. (1987), An introduction to computing with neural nets, IEEE Trans. Acoust. Speech Signal Process. 4,2, 4–22, DOI: 10.1109/MASSP.1987.1165576.

    Google Scholar 

  • López-Escobar, L., J. Cembrano, and H. Moreno (1995), Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37-46δS), Andean Geol. 22,2, 219–234, DOI: 10.5027/andgeoV22n2-a06.

    Google Scholar 

  • Melnick, D. (2007), Neogene seismotectonics of the south-central Chile margin, Ph.D. Thesis, Institut für Geowissenschaften, Mathematisch-Naturwissenschaftliche Fakultät, Universität Potsdam.

    Google Scholar 

  • Nakamura, K. (1977), Volcanoes as possible indicators of tectonic stress orientation — principle and proposal, J. Volcanol. Geoth. Res. 2,1, 1–16, DOI: 10.1016/0377-0273(77)90012-9.

    Article  Google Scholar 

  • Neyamadpour, A., S. Taib, and W.A.T. Wan Abdullah (2009), Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application, Comput. Geosci. 35,11, 2268–2274, DOI: 10.1016/j.cageo.2009.04.004.

    Article  Google Scholar 

  • Neyamadpour, A., W.A.T. Wan Abdullah, S. Taib, and D. Niamadpour (2010), 3D inversion of DC data using artificial neural networks, Stud. Geophys. Geod. 54,3, 465–485, DOI: 10.1007/s11200-010-0027-5.

    Article  Google Scholar 

  • Pek, J., and F.A.M. Santos (2006), Magnetotelluric inversion for anisotropic conductivities in layered media, Phys. Earth Planet. In. 158,2–4, 139–158, DOI: 10.1016/j.pepi.2006.03.023.

    Article  Google Scholar 

  • Pek, J., and T. Verner (1997), Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media, Geophys. J. Int. 128,3, 505–521, DOI: 10.1111/j.1365-246X.1997.tb05314.x.

    Article  Google Scholar 

  • Poulton, M.M. (2002), Neural networks as an intelligence amplification tool: A review of applications, Geophysics 67,3, 979–993, DOI: 10.1190/1.1484539.

    Article  Google Scholar 

  • Poulton, M.M., and R.A. Birken (1998), Estimating one-dimensional models from frequency-domain electromagnetic data using modular neural networks, IEEE Trans. Geosci. Remote Sens. 36,2, 547–555, DOI: 10.1109/36.662737.

    Article  Google Scholar 

  • Rodi, W., and R.L. Mackie (2001), Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics 66,1, 174–187, DOI: 10.1190/1.1444893.

    Article  Google Scholar 

  • Röth, G., and A. Tarantola (1994), Neural networks and inversion of seismic data, J. Geophys. Res. 99,B4, 6753–6768, DOI: 10.1029/93JB01563.

    Article  Google Scholar 

  • Roux, E., M. Moorkamp, A.G. Jones, M. Bischoff, B. Endrun, S. Lebedev, and T. Meier (2011), Joint inversion of long-period magnetotelluric data and surface-wave dispersion curves for anisotropic structure: Application to data from Central Germany, Geophys. Res. Lett. 38,5, L05304, DOI: 10.1029/2010GL046358.

    Article  Google Scholar 

  • Roy, K.K. (2010), Inversion of potential field data. In: K.K. Roy, Potential Theory in Applied Geophysics, Springer, Berlin Heidelberg, 561–570.

    Google Scholar 

  • Scherwath, M., E. Flueh, I. Grevemeyer, F. Tillman, E. Contreras-Reyes, and W. Weinrebe (2006), Investigating subduction zone processes in Chile, EOS Trans. AGU 87,27, 265–269, DOI: 10.1029/2006EO270001.

    Article  Google Scholar 

  • Shimelevich, M.I., and E.A. Obornev (2009), An approximation method for solving the inverse MTS problem with the use of neural networks, Phys. Solid Earth. 45,12, 1055–1071, DOI: 10.1134/S1069351309120039.

    Article  Google Scholar 

  • Singh, U.K., R.K. Tiwari, and S.B. Singh (2005), One-dimensional inversion of geoelectrical resistivity sounding data using artificial neural networks — A case study, Comput. Geosci. 31,1, 99–108, DOI: 10.1016/j.cageo.2004.09.014.

    Article  Google Scholar 

  • Soyer, W. (2002), Analysis of geomagnetic variations in the Central and Southern Andes, Ph.D. Thesis, FreieUniversität, Berlin.

    Google Scholar 

  • Spichak, V., and I. Popova (2000), Artificial neural network inversion of magnetotelluric data in terms of three-dimensional Earth macroparameters, Geophys. J. Int. 142,1, 15–26, DOI: 10.1046/j.1365-246x.2000.00065.x.

    Article  Google Scholar 

  • Spichak, V., K. Fukuoka, T. Kobayashi, T. Mogi, I. Popova, and H. Shima (2002), ANN reconstruction of geoelectrical parameters of the Minou fault zone by scalar CSAMT data, J. Appl. Geophys. 49,1–2, 75–90, DOI: 10.1016/S0926-9851(01)00100-8.

    Article  Google Scholar 

  • Van der Baan, M., and C. Jutten (2000), Neural networks in geophysical applications, Geophysics 65,4, 1032–1047, DOI: 10.1190/1.1444797.

    Article  Google Scholar 

  • Wannamaker, P.E. (2005), Anisotropy versus heterogeneity in continental solid Earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state, Surv. Geophys. 26,6, 733–765, DOI: 10.1007/s10712-005-1832-1.

    Article  Google Scholar 

  • Wiese, H. (1962), GeomagnetischeTiefentellurik. Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen, Geofis. Pura Appl. 52,1, 83–103, DOI: 10.1007/BF01996002 (in German).

    Article  Google Scholar 

  • Yin, C. (2003), Inherent nonuniqueness in magnetotelluric inversion for 1D anisotropic models, Geophysics 68,1, 138–146, DOI: 10.1190/1.1543201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoure Montahaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montahaei, M., Oskooi, B. Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks. Acta Geophys. 62, 12–43 (2014). https://doi.org/10.2478/s11600-013-0164-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0164-7

Key words

Navigation