Abstract
The isolation of pluripotent human embryonic stem (hES) cells having the capacity to differentiate in vitro to numerous cell types generated much excitement and promise in the field of regenerative medicine. However, along with great enthusiasm came hot contro-versy for stem cell research and researchers alike because available hES cell lines were isolated from “excess” embryos from in vitro fertilization clinics. Despite ethical and political debates, the methods and protocols to study diverse lineages are developing. Furthermore, strategies using specific growth factor combinations, cell-cell and cell-extracellular matrix induction systems are being explored for directed differentiation along a desired lineage. However, there is a great need to characterize the mechanisms that control self-renewal and differentiation and a necessity to improve methodologies and develop new purification protocols for the potential future clinical application of hES cells. After the scientific and political obstacles are overcome, it is anticipated that the hES cell field will make a tremendous difference in conditions, such as burn traumas and diabetic foot ulcers, as well a number of degenerative diseases such as Parkinson’s disease, type 1 diabetes, rheumatoid arthritis, and myocardial infarction. In this introductory chapter, we will summarize and review recent progress in the field of hES cell differenti-ation protocols and discuss some of the current issues surrounding hES cell research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Smith A. G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462.
Hall P. A. and Watt F. M. (1989) Stem cells: the generation and maintenance of cellular diversity. Development 106, 619–633.
Watt F. M. and Hogan B. L. (2000) Out of Eden: stem cells and their niches. Science 287, 1427–1430.
Evans M. J. and Kaufman M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.
Martin G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.
Cazpecchi M. R. (2005) Gene targeting in mice: functional analysis of the mam-malian genome for the twenty-first century. Nat. Rev. Genet. 6, 507–512.
Mansour S. L., Thomas K. R., and Capecchi M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.
Downing G. J. and Battey J. F., Jr. (2004) Technical assessment of the first 20 years of research using mouse embryonic stem cell lines. Stem Cells 22, 1168–1180.
Coraux C., Nawrocki-Raby B., Hinnrasky J., et al. (2005) Embryonic stem cells generate airway epithelial tissue. Am. J. Respir. Cell. Mol. Biol. 32, 87–92.
Kawaguchi J., Mee P. J., and Smith A. G. (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36, 758–769.
Troy T. C. and Turksen K. (2005) Commitment of embryonic stem cells to an epidermal cell fate and differentiation in vitro. Dev. Dyn. 232, 293–300.
Turksen K. (2002) Embryonic Stem Cells: Methods and Protocols. Methods in Molecular Biology Series Vol. 185. Humana, Totowa NJ.
Watanabe K., Kamiya D., Nishiyama A., et al. (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296.
Yuasa S., Itabashi Y., Koshimizu U., et al. (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol. 23, 607–611.
Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Pera M. F., Reubinoff B., and Trounson A. (2000) Human embryonic stem cells. J. Cell. Sci. 113, 5–10.
Pera M. F. and Trounson A. O. (2004) Human embryonic stem cells: prospects for development. Development 131, 5515–5525.
Reubinoff B. E., Pera M. F., Fong C. Y., Trounson A., and Bongso A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404.
Stojkovic M., Lako M., Stojkovic P., et al. (2004) Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells 22, 790–797.
Strelchenko N., Verlinsky O., Kukharenko V., and Verlinsky Y. (2004) Morula-derived human embryonic stem cells. Reprod. Biomed. Online 9, 623–629.
Verlinsky Y., Strelchenko N., Kukharenko V., et al. (2005) Human embryonic stem cell lines with genetic disorders. Reprod. Biomed. Online 10, 105–110.
Hwang W. S., Roh S. I., Lee B. C., et al. (2005) Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science 308, 1777–1783.
Amit M., Carpenter M. K., Inokuma M. S., et al. (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278.
Oh S. K., Kim H. S., Park Y. B., et al. (2005) Methods for expansion of human embryonic stem cells. Stem Cells 23, 605–609.
Schatten G., Smith J., Navara C., Park J. H., and Pedersen R. (2005) Culture of human embryonic stem cells. Nat. Methods 2, 455–463.
Miura T., Luo Y., Khrebtukova I., et al. (2004) Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev. 13, 694–715.
Amit M., Winkler M. E., Menke S., et al. (2005) No evidence for infection of human embryonic stem cells by feeder cell-derived murine leukemia viruses. Stem Cells 23, 761–771.
Martin M. J., Muotri A., Gage F., and Varki A. (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232.
Cheng L., Hammond H., Ye Z., Zhan X., and Dravid G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21, 131–142.
Amit M., Margulets V., Segev H., Shariki K., Laevsky I., Coleman R., and Itskovitz-Eldor J. (2003) Human feeder layers for human embryonic stem cells. Biol. Reprod. 68, 2150–2156.
Stojkovic P., Lako M., Stewart R., et al. (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23, 306–314.
Prowse A. B., McQuade L. R., Bryant K. J., Van Dyk D. D., Tuch B. E., and Gray P. P. (2005) Aproteome analysis of conditioned media from human neona-tal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics 5, 978–989.
Stojkovic P., Lako M., Przyborski S., et al. (2005) Human-serum matrix sup-ports undifferentiated growth of human embryonic stem cells. Stem Cells 2005 Aug; 23(7), 895–902.
Wang L., Li L., Menendez P., Cerdan C., and Bhatia M. (2005) Human embry-onic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood 105, 4598–4603.
Genbacev O., Krtolica A., Zdravkovic T., et al. (2005) Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil. Steril. 83, 1517–1529.
Inzunza J., Gertow K., Stromberg M. A., et al. (2005) Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23, 544–549.
Wang G., Zhang H., Zhao Y., et al. (2005) Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feed-er layers. Biochem. Biophys. Res. Commun. 330, 934–942.
Xu C., Rosler E., Jiang J., et al. (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23, 315–323.
Xu R. H., Peck R. M., Li D. S., Feng X., Ludwig T., and Thomson J. A. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190.
Beattie G. M., Lopez A. D., Bucay N., et al. (2005) Activin A maintains pluri-potency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23, 489–495.
Zaehres H., Lensch M. W., Daheron L., Stewart S. A., Itskovitz-Eldor J., and Daley G. Q. (2005) High-efficiency RNA interference in human embryonic stem cells. Stem Cells 23, 299–305.
Rao M. (2004) Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev. Biol. 275, 269–286.
Wei C. L., Miura T., Robson P., et al. (2005) Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 23, 166–185.
Itskovitz-Eldor J., Schuldiner M., Karsenti D., et al. (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embry-onic germ layers. Mol. Med. 6, 88–95.
Schuldiner M., Yanuka O., Itskovitz-Eldor J., Melton D. A., and Benvenisty N. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 97, 11,307-11,312.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Humana Press Inc.
About this protocol
Cite this protocol
Turksen, K., Troy, TC. (2006). Human Embryonic Stem Cells. In: Turksen, K. (eds) Human Embryonic Stem Cell Protocols. Methods In Molecular Biology, vol 331. Humana Press. https://doi.org/10.1385/1-59745-046-4:1
Download citation
DOI: https://doi.org/10.1385/1-59745-046-4:1
Publisher Name: Humana Press
Print ISBN: 978-1-58829-497-5
Online ISBN: 978-1-59745-046-1
eBook Packages: Springer Protocols