Zusammenfassung
Immersive Virtual Reality Trainings sind inzwischen in der Industrie eine praktikable Möglichkeit, Mitarbeiter flexibel und effektiv weiterzubilden. Sie stellen eine realitätsnahe Schulungsmöglichkeit dar, die gleichzeitig Kosten einsparen kann und logistische Prozesse vereinfacht. Weit verbreitet ist die Annahme, dass ein Training umso effektiver ist, je detailgetreuer und realitätsnäher die virtuelle Umgebung und darin befindliche Objekte nachgebildet sind. Diese reale, virtuelle und immersive Umgebung führt dazu, dass der Mensch sich dort präsent fühlt und somit ein Transfer des im Virtuellen Erlernten bzw. Erlebten in die Realität leichter fällt. Aus psychologischer Sicht gibt es allerdings Ansätze, die diese Annahme des größtmöglichen Realismus in virtuellen Umgebungen in Frage stellen könnten. Es besteht eine Nachfrage für virtuelle Trainings, die auf die notwendigen Aspekte für einen erfolgreichen Lerntransfer reduziert sind und eine einfache und intuitive Kommunikation zwischen Mensch und Maschine ermöglichen. Entwicklern fehlen entsprechende Gestaltungsrichtlinien, dadurch wird ein zeit- und kosteneffizientes Design dieser virtuellen Trainings erschwert. Vor diesem Hintergrund wurde eine systematische Literaturrecherche und -analyse durchgeführt, auf deren Basis Designprinzipien für virtuelle Trainings extrahiert wurden. Die Übertragung bestehender Studien aus verwandten medizinischen und sicherheitsrelevanten Bereichen fließt dabei in die Prinzipien ein. Im Fokus des Beitrags stehen kognitionspsychologische Konzepte und daraus resultierende Designprinzipien, die für effektive virtuelle Trainingsanwendungen herangezogen werden können.
Abstract
Immersive Virtual Reality trainings have become a practicable way in the industry to train employees flexibly and effectively. They represent a realistic training opportunity that can save costs and also simplify logistical processes. It is widely assumed that the more detailed and realistic virtual environments and objects in it are reproduced, the more effective trainings will be. An immersive virtual environment evokes a feeling of being present there and thus a learning transfer into reality is easier. From a psychological point of view, however, there are approaches that could question this assumption of the greatest possible realism in virtual environments. There is a demand for virtual trainings, which are reduced to the necessary aspects for a successful transfer of learning and enable a simple and intuitive human-computer-interaction. Developers lack appropriate design guidelines, which makes time and cost-efficient designs of these virtual trainings difficult. With that in mind, a systematic literature research and analysis was carried out, on the basis of which design principles for virtual trainings were extracted. The transfer of existing studies from related medical and safety-relevant areas is incorporated into the principles. The focus of the paper is on cognitive psychology concepts and resulting design principles, which can be used for the design of effective virtual training applications.
Literatur
Alexander A, Brunyé T, Sidman JG, Weil SA (2005) From gaming to training: a review of studies on fidelity, immersion, presence, and buy-in and their effects on transfer in PC based simulations and games. DARWARS train impact Gr 14.
Atkinson RK, Mayer RE, Merrill MM (2005) Fostering social agency in multimedia learning: examining the impact of an animated agent’s voice. Contemp Educ Psychol 30(1):117–139. https://doi.org/10.1016/j.cedpsych.2004.07.001
Baukal CE, Ausburn FB, Ausburn LJ (2013) A proposed multimedia cone of abstraction: updating a classic instructional design theory. J Educ Technol 9:15–24
Bliss JP, Tidwell PD (1995) The effectiveness of virtual reality for administering spatial navigation training to police officers
Brydges R, Carnahan H, Rose D et al (2010) Coordinating progressive levels of simulation fidelity to maximize educational benefit by Dubrowski , PhD University of Toronto. Acad Med 85:806–812
Busch M, Lorenz M, Tscheligi M et al (2014) Being there for real—presence in real and virtual environments and its relation to usability. Proc 8th Nord Conf Human-Computer Interact Fun, Fast, Found—Nord ’14, S 117–126 https://doi.org/10.1145/2639189.2639224
Chandler P, Sweller J (1991) Cognitive load theory and the format of instruction. Cogn Instr 8:293–332. https://doi.org/10.1207/s1532690xci0804_2
Clark JM, Paivio A (1991) Dual coding theory and education. Educ Psychol Rev 3:149–210
Cooper N, Milella F, Cant I et al (2017) Augmented cues facilitate learning transfer from virtual to real environments. Adjun Proc 2016 IEEE Int Symp Mix Augment Reality, ISMAR-Adjunct 2016, S 194–198 https://doi.org/10.1109/ISMAR-Adjunct.2016.0075
Craik FIM, Lockhart RS (1972) Levels of processing: A framework for memory research. J Verbal Learn Verbal Behav 11:671–684. https://doi.org/10.1016/S0022-5371(72)80001-X
Cummings JJ, Bailenson JN (2016) How Immersive is enough? A meta-analysis of the effect of Immersive technology on user presence. Media Psychol 19:272–309. https://doi.org/10.1080/15213269.2015.1015740
Diederich S, Brendel A, Kolbe ML (2019) On conversational agents in information systems research: analyzing the past to guide future work. Proc 14th Int Conf Wirtschaftsinformatik, S 1550–1564
Grober ED, Hamstra SJ, Wanzel KR et al (2004) The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures. Ann Surg 240:374–381. https://doi.org/10.1097/01.sla.0000133346.07434.30
Issenberg SB, McGaghie WC, Petrusa ER et al (2005) Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach 27:10–28. https://doi.org/10.1080/01421590500046924
Kalyuga S (2007) Expertise reversal effect and its implications for learner-tailored instruction. Educ Psychol Rev 19(4):509–539. https://doi.org/10.1007/s10648-007-9054-3
Kester L, Kirschner PA, Van Merriënboer JJG (2006) Just-in-time information presentation: improving learning a troubleshooting skill. Contemp Educ Psychol 31(2):167–185
Lusk MM, Atkinson RK (2007) Animated pedagogical agents: does their degree of embodiment impact learning from static or animated worked examples? Appl Cogn Psychol 21:747–764. https://doi.org/10.1002/acp.1347
Mayer RE, Moreno R (2003) Nine ways to reduce cognitive load in multimedia learning nine ways to reduce cognitive load in multimedia learning. Educ Psychol 1520:43–52. https://doi.org/10.1207/S15326985EP3801
Moreno R (2002) Pedagogical agents in virtual reality environments; do multimedia principles still apply? Ed-Media 2002, S 1374–1379
Moreno R (2004) Decreasing cognitive load for novice students: effects of explanatory versus corrective feedback in discovery-based multimedia. Instr Sci 32:99–113. https://doi.org/10.1023/B:TRUC.0000021811.66966.1d
Moreno R, Mayer RE (2002) Learning science in virtual reality multimedia environments: role of methods and media. J Educ Psychol 94:598–610. https://doi.org/10.1037/0022-0663.94.3.598
Moreno R, Mayer RE, Spires HA, Lester JC (2001) The case for social agency in computer-based teaching: do students learn more deeply when they interact with animated pedagogical agents? Cogn Instr 19(2):177–213
Norman G, Dore K, Grierson L (2012) The minimal relationship between simulation fidelity and transfer of learning. Med Educ 46:636–647. https://doi.org/10.1111/j.1365-2923.2012.04243.x
Palter VN, Grantcharov TP (2014) Individualized deliberate practice on a virtual reality simulator improves technical performance of surgical novices in the operating room: a randomized controlled trial. Ann Surg 259:443–448. https://doi.org/10.1097/SLA.0000000000000254
Pollock E, Chandler P, Sweller J (2002) Assimilating complex information. Learn Instr 12:61–86. https://doi.org/10.1016/S0959-4752(01)00016-0
Schär SG, Zimmermann PG (2007) Investigating means to reduce cognitive load from animations: applying differentiated measures of knowledge representation. J Res Technol Educ 40:64–78
Scheiter K, Gerjets P, Huk T et al (2009) The effects of realism in learning with dynamic visualizations. Learn Instr 19:481–494. https://doi.org/10.1016/j.learninstruc.2008.08.001
Schmidt-Weigand F, Kohnert A, Glowalla U (2010) Explaining the modality and contiguity effects: new insights from investigating students’ viewing behaviour. Appl Cogn Psychol 24:226–237
Slater M, Wilbur S (1997) A framework for Immersive virtual environments (FIVE): speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ 6:603–616
Stapleton AJ (2004) Serious games: serious opportunities. Pap Present Aust Game Dev Conf.
Strohmann T, Fischer S, Siemon D et al (2018) Virtual moderation assistance: creating design guidelines for virtual assistants supporting creative workshops. Proc Pacific Asia Conf Inf Syst, S 3580–3594
Sweller J (2004) Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instr Sci 32:9–31. https://doi.org/10.1007/s10648-011-9179-2
Sweller J, Van Merrienboer JJ, Paas FG (1998) Cognitive architecture and instructional design. Educ Psychol Rev 10(3):251–296
Vora J, Nair S, Gramopadhye AK et al (2002) Using virtual reality technology for aircraft visual inspection training: presence and comparison studies. Appl Ergon 33:559–570
Wirth W, Hartmann T, Böcking S et al (2007) A process model of the formation of spatial presence experiences. Media Psychol 9:493–525. https://doi.org/10.1080/15213260701283079
Zimmons PM, Panter A (2003) The influence of rendering quality on presence and task performance in a virtual environment. Proc IEEE Virtual Real.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rau, V., Niemöller, D. & Berkemeier, L. Ist weniger mehr? – Designprinzipien für Virtual Reality Training aus kognitionspsychologischer Sicht. HMD 56, 809–822 (2019). https://doi.org/10.1365/s40702-019-00546-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1365/s40702-019-00546-1