Abstract
We analyze propagation in a nonlinear, birefringent optical fiber with twist. The results show that the polarization evolution is periodic, and they are applied to the analysis of a Sagnac interferometer. The period is calculated by using perturbation theory, and we find a condition for it to be independent of the initial polarization state. We derive a simplified set of equations to describe the nonlinear evolution of the phase. We give a useful way to visualize the behavior of the nonlinear optical loop mirror (as a function of birefringence, twist, length, and input polarization) in terms of the Poincaré sphere.
© 2001 Optical Society of America
Full Article | PDF ArticleMore Like This
B. Ibarra-Escamilla, E. A. Kuzin, P. Zaca-Morán, R. Grajales-Coutiño, F. Mendez-Martinez, O. Pottiez, R. Rojas-Laguna, and J. W. Haus
Opt. Express 13(26) 10760-10767 (2005)
Y. Liang, J. W. Lou, J. K. Andersen, J. C. Stocker, O. Boyraz, M. N. Islam, and D. A. Nolan
Opt. Lett. 24(11) 726-728 (1999)
E. A. Kuzin, B. Ibarra Escamilla, D. E. Garcia-Gomez, and J. W. Haus
Opt. Lett. 26(20) 1559-1561 (2001)