Xin Meng, Yuan Zhou, Kaiyue Du, Jun Ma, Jin Meng, Aakash Kumar, Jiahang Lv, Jonghyuk Kim, and Shifeng Wang, "EFNet: enhancing feature information for 3D object detection in LiDAR point clouds," J. Opt. Soc. Am. A 41, 739-748 (2024)
With the development of autonomous driving, there has been considerable attention on 3D object detection using LiDAR. Pillar-based LiDAR point cloud detection algorithms are extensively employed in the industry due to their simple structure and high real-time performance. Nevertheless, the pillar-based detection network suffers from significant loss of 3D coordinate information during the feature degradation and extraction process. In the paper, we introduce a novel framework with high performance, termed EFNet. The EFNet uses the Enhancing Pillar Feature Module (EPFM) to provide more accurate representations of features from two directions: pillar internal space and pillar external space. Additionally, the Head Up Module (HUM) is utilized in the detection head to integrate multi-scale information and enhance the network’s information perception ability. The EFNet achieves impressive results on the nuScenes datasets, namely, 53.3% NDS and 42.4% mAP. Compared to the baseline PointPillars, EFNet improves 8% NDS and 11.9% mAP. The results demonstrate that the proposed framework can effectively improve the network’s accuracy while ensuring deployability.
Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the author upon reasonable request.
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.