[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental determination of photon propagation in highly absorbing and scattering media

Not Accessible

Your library or personal account may give you access

Abstract

Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores. Several theoretical models have been validated for diffuse photon propagation in highly scattering and low-absorbing media that describe the optical appearance of tissues in the near-infrared (NIR) region. However, these models are not generally applicable to quantitative optical investigations in the visible because of the significantly higher tissue absorption in this spectral region compared with that in the NIR. We performed photon measurements through highly scattering and absorbing media for ratios of the absorption coefficient to the reduced scattering coefficient ranging approximately from zero to one. We examined experimentally the performance of the absorption-dependent diffusion coefficient defined by Aronson and Corngold [ J. Opt. Soc. Am. A 16, 1066 ( 1999)] for quantitative estimations of photon propagation in the low- and high-absorption regimes. Through steady-state measurements we verified that the transmitted intensity is well described by the diffusion equation by considering a modified diffusion coefficient with a nonlinear dependence on the absorption. This study confirms that simple analytical solutions based on the diffusion approximation are suitable even for high-absorption regimes and shows that diffusion-approximation-based models are valid for quantitative measurements and tomographic imaging of tissues in the visible.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Photon diffusion coefficient in scattering and absorbing media

Romain Pierrat, Jean-Jacques Greffet, and Rémi Carminati
J. Opt. Soc. Am. A 23(5) 1106-1110 (2006)

Definition of the diffusion coefficient in scattering and absorbing media

Rachid Elaloufi, Rémi Carminati, and Jean-Jacques Greffet
J. Opt. Soc. Am. A 20(4) 678-685 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel