Abstract
Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores. Several theoretical models have been validated for diffuse photon propagation in highly scattering and low-absorbing media that describe the optical appearance of tissues in the near-infrared (NIR) region. However, these models are not generally applicable to quantitative optical investigations in the visible because of the significantly higher tissue absorption in this spectral region compared with that in the NIR. We performed photon measurements through highly scattering and absorbing media for ratios of the absorption coefficient to the reduced scattering coefficient ranging approximately from zero to one. We examined experimentally the performance of the absorption-dependent diffusion coefficient defined by Aronson and Corngold [ J. Opt. Soc. Am. A 16, 1066 ( 1999)] for quantitative estimations of photon propagation in the low- and high-absorption regimes. Through steady-state measurements we verified that the transmitted intensity is well described by the diffusion equation by considering a modified diffusion coefficient with a nonlinear dependence on the absorption. This study confirms that simple analytical solutions based on the diffusion approximation are suitable even for high-absorption regimes and shows that diffusion-approximation-based models are valid for quantitative measurements and tomographic imaging of tissues in the visible.
© 2005 Optical Society of America
Full Article | PDF ArticleMore Like This
Romain Pierrat, Jean-Jacques Greffet, and Rémi Carminati
J. Opt. Soc. Am. A 23(5) 1106-1110 (2006)
Joshua B. Fishkin and Enrico Gratton
J. Opt. Soc. Am. A 10(1) 127-140 (1993)
Rachid Elaloufi, Rémi Carminati, and Jean-Jacques Greffet
J. Opt. Soc. Am. A 20(4) 678-685 (2003)